520389e3
xiaoyu
接入cocos源码,编译未通过,继续修改
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
|
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
#include <new>
inline bool overlapSlabs(const float* amin, const float* amax,
const float* bmin, const float* bmax,
const float px, const float py)
{
// Check for horizontal overlap.
// The segment is shrunken a little so that slabs which touch
// at end points are not connected.
const float minx = dtMax(amin[0]+px,bmin[0]+px);
const float maxx = dtMin(amax[0]-px,bmax[0]-px);
if (minx > maxx)
return false;
// Check vertical overlap.
const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]);
const float ak = amin[1] - ad*amin[0];
const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]);
const float bk = bmin[1] - bd*bmin[0];
const float aminy = ad*minx + ak;
const float amaxy = ad*maxx + ak;
const float bminy = bd*minx + bk;
const float bmaxy = bd*maxx + bk;
const float dmin = bminy - aminy;
const float dmax = bmaxy - amaxy;
// Crossing segments always overlap.
if (dmin*dmax < 0)
return true;
// Check for overlap at endpoints.
const float thr = dtSqr(py*2);
if (dmin*dmin <= thr || dmax*dmax <= thr)
return true;
return false;
}
static float getSlabCoord(const float* va, const int side)
{
if (side == 0 || side == 4)
return va[0];
else if (side == 2 || side == 6)
return va[2];
return 0;
}
static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side)
{
if (side == 0 || side == 4)
{
if (va[2] < vb[2])
{
bmin[0] = va[2];
bmin[1] = va[1];
bmax[0] = vb[2];
bmax[1] = vb[1];
}
else
{
bmin[0] = vb[2];
bmin[1] = vb[1];
bmax[0] = va[2];
bmax[1] = va[1];
}
}
else if (side == 2 || side == 6)
{
if (va[0] < vb[0])
{
bmin[0] = va[0];
bmin[1] = va[1];
bmax[0] = vb[0];
bmax[1] = vb[1];
}
else
{
bmin[0] = vb[0];
bmin[1] = vb[1];
bmax[0] = va[0];
bmax[1] = va[1];
}
}
}
inline int computeTileHash(int x, int y, const int mask)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int n = h1 * x + h2 * y;
return (int)(n & mask);
}
inline unsigned int allocLink(dtMeshTile* tile)
{
if (tile->linksFreeList == DT_NULL_LINK)
return DT_NULL_LINK;
unsigned int link = tile->linksFreeList;
tile->linksFreeList = tile->links[link].next;
return link;
}
inline void freeLink(dtMeshTile* tile, unsigned int link)
{
tile->links[link].next = tile->linksFreeList;
tile->linksFreeList = link;
}
dtNavMesh* dtAllocNavMesh()
{
void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM);
if (!mem) return 0;
return new(mem) dtNavMesh;
}
/// @par
///
/// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA
/// flag set.
void dtFreeNavMesh(dtNavMesh* navmesh)
{
if (!navmesh) return;
navmesh->~dtNavMesh();
dtFree(navmesh);
}
//////////////////////////////////////////////////////////////////////////////////////////
/**
@class dtNavMesh
The navigation mesh consists of one or more tiles defining three primary types of structural data:
A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.)
A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.)
Off-mesh connections, which define custom point-to-point edges within the navigation graph.
The general build process is as follows:
-# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline.
-# Optionally, create off-mesh connection data.
-# Combine the source data into a dtNavMeshCreateParams structure.
-# Create a tile data array using dtCreateNavMeshData().
-# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes,
the tile data is loaded during this step.)
-# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile().
Notes:
- This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding.
- Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized
to have only a single tile.
- This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will
always contain either a success or failure flag.
@see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh
*/
dtNavMesh::dtNavMesh() :
m_tileWidth(0),
m_tileHeight(0),
m_maxTiles(0),
m_tileLutSize(0),
m_tileLutMask(0),
m_posLookup(0),
m_nextFree(0),
m_tiles(0)
{
#ifndef DT_POLYREF64
m_saltBits = 0;
m_tileBits = 0;
m_polyBits = 0;
#endif
memset(&m_params, 0, sizeof(dtNavMeshParams));
m_orig[0] = 0;
m_orig[1] = 0;
m_orig[2] = 0;
}
dtNavMesh::~dtNavMesh()
{
for (int i = 0; i < m_maxTiles; ++i)
{
if (m_tiles[i].flags & DT_TILE_FREE_DATA)
{
dtFree(m_tiles[i].data);
m_tiles[i].data = 0;
m_tiles[i].dataSize = 0;
}
}
dtFree(m_posLookup);
dtFree(m_tiles);
}
dtStatus dtNavMesh::init(const dtNavMeshParams* params)
{
memcpy(&m_params, params, sizeof(dtNavMeshParams));
dtVcopy(m_orig, params->orig);
m_tileWidth = params->tileWidth;
m_tileHeight = params->tileHeight;
// Init tiles
m_maxTiles = params->maxTiles;
m_tileLutSize = dtNextPow2(params->maxTiles/4);
if (!m_tileLutSize) m_tileLutSize = 1;
m_tileLutMask = m_tileLutSize-1;
m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM);
if (!m_tiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM);
if (!m_posLookup)
return DT_FAILURE | DT_OUT_OF_MEMORY;
memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
m_nextFree = 0;
for (int i = m_maxTiles-1; i >= 0; --i)
{
m_tiles[i].salt = 1;
m_tiles[i].next = m_nextFree;
m_nextFree = &m_tiles[i];
}
// Init ID generator values.
#ifndef DT_POLYREF64
m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles));
m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys));
// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits);
if (m_saltBits < 10)
return DT_FAILURE | DT_INVALID_PARAM;
#endif
return DT_SUCCESS;
}
dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (header->version != DT_NAVMESH_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
dtNavMeshParams params;
dtVcopy(params.orig, header->bmin);
params.tileWidth = header->bmax[0] - header->bmin[0];
params.tileHeight = header->bmax[2] - header->bmin[2];
params.maxTiles = 1;
params.maxPolys = header->polyCount;
dtStatus status = init(¶ms);
if (dtStatusFailed(status))
return status;
return addTile(data, dataSize, flags, 0, 0);
}
/// @par
///
/// @note The parameters are created automatically when the single tile
/// initialization is performed.
const dtNavMeshParams* dtNavMesh::getParams() const
{
return &m_params;
}
//////////////////////////////////////////////////////////////////////////////////////////
int dtNavMesh::findConnectingPolys(const float* va, const float* vb,
const dtMeshTile* tile, int side,
dtPolyRef* con, float* conarea, int maxcon) const
{
if (!tile) return 0;
float amin[2], amax[2];
calcSlabEndPoints(va,vb, amin,amax, side);
const float apos = getSlabCoord(va, side);
// Remove links pointing to 'side' and compact the links array.
float bmin[2], bmax[2];
unsigned short m = DT_EXT_LINK | (unsigned short)side;
int n = 0;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->neis[j] != m) continue;
const float* vc = &tile->verts[poly->verts[j]*3];
const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3];
const float bpos = getSlabCoord(vc, side);
// Segments are not close enough.
if (dtAbs(apos-bpos) > 0.01f)
continue;
// Check if the segments touch.
calcSlabEndPoints(vc,vd, bmin,bmax, side);
if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue;
// Add return value.
if (n < maxcon)
{
conarea[n*2+0] = dtMax(amin[0], bmin[0]);
conarea[n*2+1] = dtMin(amax[0], bmax[0]);
con[n] = base | (dtPolyRef)i;
n++;
}
break;
}
}
return n;
}
void dtNavMesh::unconnectExtLinks(dtMeshTile* tile, dtMeshTile* target)
{
if (!tile || !target) return;
const unsigned int targetNum = decodePolyIdTile(getTileRef(target));
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
unsigned int j = poly->firstLink;
unsigned int pj = DT_NULL_LINK;
while (j != DT_NULL_LINK)
{
if (tile->links[j].side != 0xff &&
decodePolyIdTile(tile->links[j].ref) == targetNum)
{
// Revove link.
unsigned int nj = tile->links[j].next;
if (pj == DT_NULL_LINK)
poly->firstLink = nj;
else
tile->links[pj].next = nj;
freeLink(tile, j);
j = nj;
}
else
{
// Advance
pj = j;
j = tile->links[j].next;
}
}
}
}
void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
if (!tile) return;
// Connect border links.
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
// Create new links.
// unsigned short m = DT_EXT_LINK | (unsigned short)side;
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip non-portal edges.
if ((poly->neis[j] & DT_EXT_LINK) == 0)
continue;
const int dir = (int)(poly->neis[j] & 0xff);
if (side != -1 && dir != side)
continue;
// Create new links
const float* va = &tile->verts[poly->verts[j]*3];
const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
dtPolyRef nei[4];
float neia[4*2];
int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4);
for (int k = 0; k < nnei; ++k)
{
unsigned int idx = allocLink(tile);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = nei[k];
link->edge = (unsigned char)j;
link->side = (unsigned char)dir;
link->next = poly->firstLink;
poly->firstLink = idx;
// Compress portal limits to a byte value.
if (dir == 0 || dir == 4)
{
float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]);
float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]);
if (tmin > tmax)
dtSwap(tmin,tmax);
link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
}
else if (dir == 2 || dir == 6)
{
float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]);
float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]);
if (tmin > tmax)
dtSwap(tmin,tmax);
link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
}
}
}
}
}
}
void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
if (!tile) return;
// Connect off-mesh links.
// We are interested on links which land from target tile to this tile.
const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side);
for (int i = 0; i < target->header->offMeshConCount; ++i)
{
dtOffMeshConnection* targetCon = &target->offMeshCons[i];
if (targetCon->side != oppositeSide)
continue;
dtPoly* targetPoly = &target->polys[targetCon->poly];
// Skip off-mesh connections which start location could not be connected at all.
if (targetPoly->firstLink == DT_NULL_LINK)
continue;
const float ext[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad };
// Find polygon to connect to.
const float* p = &targetCon->pos[3];
float nearestPt[3];
dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt);
if (!ref)
continue;
// findNearestPoly may return too optimistic results, further check to make sure.
if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad))
continue;
// Make sure the location is on current mesh.
float* v = &target->verts[targetPoly->verts[1]*3];
dtVcopy(v, nearestPt);
// Link off-mesh connection to target poly.
unsigned int idx = allocLink(target);
if (idx != DT_NULL_LINK)
{
dtLink* link = &target->links[idx];
link->ref = ref;
link->edge = (unsigned char)1;
link->side = oppositeSide;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = targetPoly->firstLink;
targetPoly->firstLink = idx;
}
// Link target poly to off-mesh connection.
if (targetCon->flags & DT_OFFMESH_CON_BIDIR)
{
unsigned int tidx = allocLink(tile);
if (tidx != DT_NULL_LINK)
{
const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
dtPoly* landPoly = &tile->polys[landPolyIdx];
dtLink* link = &tile->links[tidx];
link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly);
link->edge = 0xff;
link->side = (unsigned char)(side == -1 ? 0xff : side);
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = landPoly->firstLink;
landPoly->firstLink = tidx;
}
}
}
}
void dtNavMesh::connectIntLinks(dtMeshTile* tile)
{
if (!tile) return;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
poly->firstLink = DT_NULL_LINK;
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Build edge links backwards so that the links will be
// in the linked list from lowest index to highest.
for (int j = poly->vertCount-1; j >= 0; --j)
{
// Skip hard and non-internal edges.
if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;
unsigned int idx = allocLink(tile);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = base | (dtPolyRef)(poly->neis[j]-1);
link->edge = (unsigned char)j;
link->side = 0xff;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = poly->firstLink;
poly->firstLink = idx;
}
}
}
}
void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
{
if (!tile) return;
dtPolyRef base = getPolyRefBase(tile);
// Base off-mesh connection start points.
for (int i = 0; i < tile->header->offMeshConCount; ++i)
{
dtOffMeshConnection* con = &tile->offMeshCons[i];
dtPoly* poly = &tile->polys[con->poly];
const float ext[3] = { con->rad, tile->header->walkableClimb, con->rad };
// Find polygon to connect to.
const float* p = &con->pos[0]; // First vertex
float nearestPt[3];
dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt);
if (!ref) continue;
// findNearestPoly may return too optimistic results, further check to make sure.
if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad))
continue;
// Make sure the location is on current mesh.
float* v = &tile->verts[poly->verts[0]*3];
dtVcopy(v, nearestPt);
// Link off-mesh connection to target poly.
unsigned int idx = allocLink(tile);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = ref;
link->edge = (unsigned char)0;
link->side = 0xff;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = poly->firstLink;
poly->firstLink = idx;
}
// Start end-point is always connect back to off-mesh connection.
unsigned int tidx = allocLink(tile);
if (tidx != DT_NULL_LINK)
{
const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
dtPoly* landPoly = &tile->polys[landPolyIdx];
dtLink* link = &tile->links[tidx];
link->ref = base | (dtPolyRef)(con->poly);
link->edge = 0xff;
link->side = 0xff;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = landPoly->firstLink;
landPoly->firstLink = tidx;
}
}
}
void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
{
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
getTileAndPolyByRefUnsafe(ref, &tile, &poly);
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
const float* v0 = &tile->verts[poly->verts[0]*3];
const float* v1 = &tile->verts[poly->verts[1]*3];
const float d0 = dtVdist(pos, v0);
const float d1 = dtVdist(pos, v1);
const float u = d0 / (d0+d1);
dtVlerp(closest, v0, v1, u);
if (posOverPoly)
*posOverPoly = false;
return;
}
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
// Clamp point to be inside the polygon.
float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
const int nv = poly->vertCount;
for (int i = 0; i < nv; ++i)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
dtVcopy(closest, pos);
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
{
// Point is outside the polygon, dtClamp to nearest edge.
float dmin = FLT_MAX;
int imin = -1;
for (int i = 0; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
dtVlerp(closest, va, vb, edget[imin]);
if (posOverPoly)
*posOverPoly = false;
}
else
{
if (posOverPoly)
*posOverPoly = true;
}
// Find height at the location.
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
closest[1] = h;
break;
}
}
}
dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,
const float* center, const float* extents,
float* nearestPt) const
{
float bmin[3], bmax[3];
dtVsub(bmin, center, extents);
dtVadd(bmax, center, extents);
// Get nearby polygons from proximity grid.
dtPolyRef polys[128];
int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtPolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < polyCount; ++i)
{
dtPolyRef ref = polys[i];
float closestPtPoly[3];
float diff[3];
bool posOverPoly = false;
float d;
closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly);
// If a point is directly over a polygon and closer than
// climb height, favor that instead of straight line nearest point.
dtVsub(diff, center, closestPtPoly);
if (posOverPoly)
{
d = dtAbs(diff[1]) - tile->header->walkableClimb;
d = d > 0 ? d*d : 0;
}
else
{
d = dtVlenSqr(diff);
}
if (d < nearestDistanceSqr)
{
dtVcopy(nearestPt, closestPtPoly);
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
dtPolyRef* polys, const int maxPolys) const
{
if (tile->bvTree)
{
const dtBVNode* node = &tile->bvTree[0];
const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
const float* tbmin = tile->header->bmin;
const float* tbmax = tile->header->bmax;
const float qfac = tile->header->bvQuantFactor;
// Calculate quantized box
unsigned short bmin[3], bmax[3];
// dtClamp query box to world box.
float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
// Quantize
bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
// Traverse tree
dtPolyRef base = getPolyRefBase(tile);
int n = 0;
while (node < end)
{
const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
const bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)node->i;
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
else
{
float bmin[3], bmax[3];
int n = 0;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
// Do not return off-mesh connection polygons.
if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Calc polygon bounds.
const float* v = &tile->verts[p->verts[0]*3];
dtVcopy(bmin, v);
dtVcopy(bmax, v);
for (int j = 1; j < p->vertCount; ++j)
{
v = &tile->verts[p->verts[j]*3];
dtVmin(bmin, v);
dtVmax(bmax, v);
}
if (dtOverlapBounds(qmin,qmax, bmin,bmax))
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)i;
}
}
return n;
}
}
/// @par
///
/// The add operation will fail if the data is in the wrong format, the allocated tile
/// space is full, or there is a tile already at the specified reference.
///
/// The lastRef parameter is used to restore a tile with the same tile
/// reference it had previously used. In this case the #dtPolyRef's for the
/// tile will be restored to the same values they were before the tile was
/// removed.
///
/// @see dtCreateNavMeshData, #removeTile
dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags,
dtTileRef lastRef, dtTileRef* result)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (header->version != DT_NAVMESH_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
// Make sure the location is free.
if (getTileAt(header->x, header->y, header->layer))
return DT_FAILURE;
// Allocate a tile.
dtMeshTile* tile = 0;
if (!lastRef)
{
if (m_nextFree)
{
tile = m_nextFree;
m_nextFree = tile->next;
tile->next = 0;
}
}
else
{
// Try to relocate the tile to specific index with same salt.
int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef);
if (tileIndex >= m_maxTiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Try to find the specific tile id from the free list.
dtMeshTile* target = &m_tiles[tileIndex];
dtMeshTile* prev = 0;
tile = m_nextFree;
while (tile && tile != target)
{
prev = tile;
tile = tile->next;
}
// Could not find the correct location.
if (tile != target)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Remove from freelist
if (!prev)
m_nextFree = tile->next;
else
prev->next = tile->next;
// Restore salt.
tile->salt = decodePolyIdSalt((dtPolyRef)lastRef);
}
// Make sure we could allocate a tile.
if (!tile)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Insert tile into the position lut.
int h = computeTileHash(header->x, header->y, m_tileLutMask);
tile->next = m_posLookup[h];
m_posLookup[h] = tile;
// Patch header pointers.
const int headerSize = dtAlign4(sizeof(dtMeshHeader));
const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
unsigned char* d = data + headerSize;
tile->verts = (float*)d; d += vertsSize;
tile->polys = (dtPoly*)d; d += polysSize;
tile->links = (dtLink*)d; d += linksSize;
tile->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize;
tile->detailVerts = (float*)d; d += detailVertsSize;
tile->detailTris = (unsigned char*)d; d += detailTrisSize;
tile->bvTree = (dtBVNode*)d; d += bvtreeSize;
tile->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize;
// If there are no items in the bvtree, reset the tree pointer.
if (!bvtreeSize)
tile->bvTree = 0;
// Build links freelist
tile->linksFreeList = 0;
tile->links[header->maxLinkCount-1].next = DT_NULL_LINK;
for (int i = 0; i < header->maxLinkCount-1; ++i)
tile->links[i].next = i+1;
// Init tile.
tile->header = header;
tile->data = data;
tile->dataSize = dataSize;
tile->flags = flags;
connectIntLinks(tile);
baseOffMeshLinks(tile);
// Create connections with neighbour tiles.
static const int MAX_NEIS = 32;
dtMeshTile* neis[MAX_NEIS];
int nneis;
// Connect with layers in current tile.
nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
if (neis[j] != tile)
{
connectExtLinks(tile, neis[j], -1);
connectExtLinks(neis[j], tile, -1);
}
connectExtOffMeshLinks(tile, neis[j], -1);
connectExtOffMeshLinks(neis[j], tile, -1);
}
// Connect with neighbour tiles.
for (int i = 0; i < 8; ++i)
{
nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
connectExtLinks(tile, neis[j], i);
connectExtLinks(neis[j], tile, dtOppositeTile(i));
connectExtOffMeshLinks(tile, neis[j], i);
connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i));
}
}
if (result)
*result = getTileRef(tile);
return DT_SUCCESS;
}
const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y &&
tile->header->layer == layer)
{
return tile;
}
tile = tile->next;
}
return 0;
}
int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const
{
int nx = x, ny = y;
switch (side)
{
case 0: nx++; break;
case 1: nx++; ny++; break;
case 2: ny++; break;
case 3: nx--; ny++; break;
case 4: nx--; break;
case 5: nx--; ny--; break;
case 6: ny--; break;
case 7: nx++; ny--; break;
};
return getTilesAt(nx, ny, tiles, maxTiles);
}
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
if (n < maxTiles)
tiles[n++] = tile;
}
tile = tile->next;
}
return n;
}
/// @par
///
/// This function will not fail if the tiles array is too small to hold the
/// entire result set. It will simply fill the array to capacity.
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
if (n < maxTiles)
tiles[n++] = tile;
}
tile = tile->next;
}
return n;
}
dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y &&
tile->header->layer == layer)
{
return getTileRef(tile);
}
tile = tile->next;
}
return 0;
}
const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const
{
if (!ref)
return 0;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return 0;
const dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return 0;
return tile;
}
int dtNavMesh::getMaxTiles() const
{
return m_maxTiles;
}
dtMeshTile* dtNavMesh::getTile(int i)
{
return &m_tiles[i];
}
const dtMeshTile* dtNavMesh::getTile(int i) const
{
return &m_tiles[i];
}
void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const
{
*tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth);
*ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight);
}
dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
*tile = &m_tiles[it];
*poly = &m_tiles[it].polys[ip];
return DT_SUCCESS;
}
/// @par
///
/// @warning Only use this function if it is known that the provided polygon
/// reference is valid. This function is faster than #getTileAndPolyByRef, but
/// it does not validate the reference.
void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
*tile = &m_tiles[it];
*poly = &m_tiles[it].polys[ip];
}
bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const
{
if (!ref) return false;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
return true;
}
/// @par
///
/// This function returns the data for the tile so that, if desired,
/// it can be added back to the navigation mesh at a later point.
///
/// @see #addTile
dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize)
{
if (!ref)
return DT_FAILURE | DT_INVALID_PARAM;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return DT_FAILURE | DT_INVALID_PARAM;
// Remove tile from hash lookup.
int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask);
dtMeshTile* prev = 0;
dtMeshTile* cur = m_posLookup[h];
while (cur)
{
if (cur == tile)
{
if (prev)
prev->next = cur->next;
else
m_posLookup[h] = cur->next;
break;
}
prev = cur;
cur = cur->next;
}
// Remove connections to neighbour tiles.
// Create connections with neighbour tiles.
static const int MAX_NEIS = 32;
dtMeshTile* neis[MAX_NEIS];
int nneis;
// Connect with layers in current tile.
nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
if (neis[j] == tile) continue;
unconnectExtLinks(neis[j], tile);
}
// Connect with neighbour tiles.
for (int i = 0; i < 8; ++i)
{
nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
unconnectExtLinks(neis[j], tile);
}
// Reset tile.
if (tile->flags & DT_TILE_FREE_DATA)
{
// Owns data
dtFree(tile->data);
tile->data = 0;
tile->dataSize = 0;
if (data) *data = 0;
if (dataSize) *dataSize = 0;
}
else
{
if (data) *data = tile->data;
if (dataSize) *dataSize = tile->dataSize;
}
tile->header = 0;
tile->flags = 0;
tile->linksFreeList = 0;
tile->polys = 0;
tile->verts = 0;
tile->links = 0;
tile->detailMeshes = 0;
tile->detailVerts = 0;
tile->detailTris = 0;
tile->bvTree = 0;
tile->offMeshCons = 0;
// Update salt, salt should never be zero.
#ifdef DT_POLYREF64
tile->salt = (tile->salt+1) & ((1<<DT_SALT_BITS)-1);
#else
tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
#endif
if (tile->salt == 0)
tile->salt++;
// Add to free list.
tile->next = m_nextFree;
m_nextFree = tile;
return DT_SUCCESS;
}
dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return (dtTileRef)encodePolyId(tile->salt, it, 0);
}
/// @par
///
/// Example use case:
/// @code
///
/// const dtPolyRef base = navmesh->getPolyRefBase(tile);
/// for (int i = 0; i < tile->header->polyCount; ++i)
/// {
/// const dtPoly* p = &tile->polys[i];
/// const dtPolyRef ref = base | (dtPolyRef)i;
///
/// // Use the reference to access the polygon data.
/// }
/// @endcode
dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return encodePolyId(tile->salt, it, 0);
}
struct dtTileState
{
int magic; // Magic number, used to identify the data.
int version; // Data version number.
dtTileRef ref; // Tile ref at the time of storing the data.
};
struct dtPolyState
{
unsigned short flags; // Flags (see dtPolyFlags).
unsigned char area; // Area ID of the polygon.
};
/// @see #storeTileState
int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const
{
if (!tile) return 0;
const int headerSize = dtAlign4(sizeof(dtTileState));
const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
return headerSize + polyStateSize;
}
/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note The state data is only valid until the tile reference changes.
/// @see #getTileStateSize, #restoreTileState
dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const
{
// Make sure there is enough space to store the state.
const int sizeReq = getTileStateSize(tile);
if (maxDataSize < sizeReq)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
dtTileState* tileState = (dtTileState*)data; data += dtAlign4(sizeof(dtTileState));
dtPolyState* polyStates = (dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
// Store tile state.
tileState->magic = DT_NAVMESH_STATE_MAGIC;
tileState->version = DT_NAVMESH_STATE_VERSION;
tileState->ref = getTileRef(tile);
// Store per poly state.
for (int i = 0; i < tile->header->polyCount; ++i)
{
const dtPoly* p = &tile->polys[i];
dtPolyState* s = &polyStates[i];
s->flags = p->flags;
s->area = p->getArea();
}
return DT_SUCCESS;
}
/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's.
/// @see #storeTileState
dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize)
{
// Make sure there is enough space to store the state.
const int sizeReq = getTileStateSize(tile);
if (maxDataSize < sizeReq)
return DT_FAILURE | DT_INVALID_PARAM;
const dtTileState* tileState = (const dtTileState*)data; data += dtAlign4(sizeof(dtTileState));
const dtPolyState* polyStates = (const dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
// Check that the restore is possible.
if (tileState->magic != DT_NAVMESH_STATE_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (tileState->version != DT_NAVMESH_STATE_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
if (tileState->ref != getTileRef(tile))
return DT_FAILURE | DT_INVALID_PARAM;
// Restore per poly state.
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
const dtPolyState* s = &polyStates[i];
p->flags = s->flags;
p->setArea(s->area);
}
return DT_SUCCESS;
}
/// @par
///
/// Off-mesh connections are stored in the navigation mesh as special 2-vertex
/// polygons with a single edge. At least one of the vertices is expected to be
/// inside a normal polygon. So an off-mesh connection is "entered" from a
/// normal polygon at one of its endpoints. This is the polygon identified by
/// the prevRef parameter.
dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const
{
unsigned int salt, it, ip;
if (!polyRef)
return DT_FAILURE;
// Get current polygon
decodePolyId(polyRef, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
return DT_FAILURE;
// Figure out which way to hand out the vertices.
int idx0 = 0, idx1 = 1;
// Find link that points to first vertex.
for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
{
if (tile->links[i].edge == 0)
{
if (tile->links[i].ref != prevRef)
{
idx0 = 1;
idx1 = 0;
}
break;
}
}
dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]);
dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]);
return DT_SUCCESS;
}
const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
if (!ref)
return 0;
// Get current polygon
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return 0;
const dtPoly* poly = &tile->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
return 0;
const unsigned int idx = ip - tile->header->offMeshBase;
dtAssert(idx < (unsigned int)tile->header->offMeshConCount);
return &tile->offMeshCons[idx];
}
dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
// Change flags.
poly->flags = flags;
return DT_SUCCESS;
}
dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
*resultFlags = poly->flags;
return DT_SUCCESS;
}
dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
poly->setArea(area);
return DT_SUCCESS;
}
dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
*resultArea = poly->getArea();
return DT_SUCCESS;
}
|