DetourNavMesh.cpp 41.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
#include <new>


inline bool overlapSlabs(const float* amin, const float* amax,
						 const float* bmin, const float* bmax,
						 const float px, const float py)
{
	// Check for horizontal overlap.
	// The segment is shrunken a little so that slabs which touch
	// at end points are not connected.
	const float minx = dtMax(amin[0]+px,bmin[0]+px);
	const float maxx = dtMin(amax[0]-px,bmax[0]-px);
	if (minx > maxx)
		return false;
	
	// Check vertical overlap.
	const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]);
	const float ak = amin[1] - ad*amin[0];
	const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]);
	const float bk = bmin[1] - bd*bmin[0];
	const float aminy = ad*minx + ak;
	const float amaxy = ad*maxx + ak;
	const float bminy = bd*minx + bk;
	const float bmaxy = bd*maxx + bk;
	const float dmin = bminy - aminy;
	const float dmax = bmaxy - amaxy;
		
	// Crossing segments always overlap.
	if (dmin*dmax < 0)
		return true;
		
	// Check for overlap at endpoints.
	const float thr = dtSqr(py*2);
	if (dmin*dmin <= thr || dmax*dmax <= thr)
		return true;
		
	return false;
}

static float getSlabCoord(const float* va, const int side)
{
	if (side == 0 || side == 4)
		return va[0];
	else if (side == 2 || side == 6)
		return va[2];
	return 0;
}

static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side)
{
	if (side == 0 || side == 4)
	{
		if (va[2] < vb[2])
		{
			bmin[0] = va[2];
			bmin[1] = va[1];
			bmax[0] = vb[2];
			bmax[1] = vb[1];
		}
		else
		{
			bmin[0] = vb[2];
			bmin[1] = vb[1];
			bmax[0] = va[2];
			bmax[1] = va[1];
		}
	}
	else if (side == 2 || side == 6)
	{
		if (va[0] < vb[0])
		{
			bmin[0] = va[0];
			bmin[1] = va[1];
			bmax[0] = vb[0];
			bmax[1] = vb[1];
		}
		else
		{
			bmin[0] = vb[0];
			bmin[1] = vb[1];
			bmax[0] = va[0];
			bmax[1] = va[1];
		}
	}
}

inline int computeTileHash(int x, int y, const int mask)
{
	const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
	const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
	unsigned int n = h1 * x + h2 * y;
	return (int)(n & mask);
}

inline unsigned int allocLink(dtMeshTile* tile)
{
	if (tile->linksFreeList == DT_NULL_LINK)
		return DT_NULL_LINK;
	unsigned int link = tile->linksFreeList;
	tile->linksFreeList = tile->links[link].next;
	return link;
}

inline void freeLink(dtMeshTile* tile, unsigned int link)
{
	tile->links[link].next = tile->linksFreeList;
	tile->linksFreeList = link;
}


dtNavMesh* dtAllocNavMesh()
{
	void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM);
	if (!mem) return 0;
	return new(mem) dtNavMesh;
}

/// @par
///
/// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA
/// flag set.
void dtFreeNavMesh(dtNavMesh* navmesh)
{
	if (!navmesh) return;
	navmesh->~dtNavMesh();
	dtFree(navmesh);
}

//////////////////////////////////////////////////////////////////////////////////////////

/**
@class dtNavMesh

The navigation mesh consists of one or more tiles defining three primary types of structural data:

A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.)
A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.)
Off-mesh connections, which define custom point-to-point edges within the navigation graph.

The general build process is as follows:

-# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline.
-# Optionally, create off-mesh connection data.
-# Combine the source data into a dtNavMeshCreateParams structure.
-# Create a tile data array using dtCreateNavMeshData().
-# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes,
   the tile data is loaded during this step.)
-# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile().

Notes:

- This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding.
- Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized 
  to have only a single tile.
- This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will 
  always contain either a success or failure flag.

@see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh
*/

dtNavMesh::dtNavMesh() :
	m_tileWidth(0),
	m_tileHeight(0),
	m_maxTiles(0),
	m_tileLutSize(0),
	m_tileLutMask(0),
	m_posLookup(0),
	m_nextFree(0),
	m_tiles(0)
{
#ifndef DT_POLYREF64
	m_saltBits = 0;
	m_tileBits = 0;
	m_polyBits = 0;
#endif
	memset(&m_params, 0, sizeof(dtNavMeshParams));
	m_orig[0] = 0;
	m_orig[1] = 0;
	m_orig[2] = 0;
}

dtNavMesh::~dtNavMesh()
{
	for (int i = 0; i < m_maxTiles; ++i)
	{
		if (m_tiles[i].flags & DT_TILE_FREE_DATA)
		{
			dtFree(m_tiles[i].data);
			m_tiles[i].data = 0;
			m_tiles[i].dataSize = 0;
		}
	}
	dtFree(m_posLookup);
	dtFree(m_tiles);
}
		
dtStatus dtNavMesh::init(const dtNavMeshParams* params)
{
	memcpy(&m_params, params, sizeof(dtNavMeshParams));
	dtVcopy(m_orig, params->orig);
	m_tileWidth = params->tileWidth;
	m_tileHeight = params->tileHeight;
	
	// Init tiles
	m_maxTiles = params->maxTiles;
	m_tileLutSize = dtNextPow2(params->maxTiles/4);
	if (!m_tileLutSize) m_tileLutSize = 1;
	m_tileLutMask = m_tileLutSize-1;
	
	m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM);
	if (!m_tiles)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM);
	if (!m_posLookup)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
	memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
	m_nextFree = 0;
	for (int i = m_maxTiles-1; i >= 0; --i)
	{
		m_tiles[i].salt = 1;
		m_tiles[i].next = m_nextFree;
		m_nextFree = &m_tiles[i];
	}
	
	// Init ID generator values.
#ifndef DT_POLYREF64
	m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles));
	m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys));
	// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
	m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits);

	if (m_saltBits < 10)
		return DT_FAILURE | DT_INVALID_PARAM;
#endif
	
	return DT_SUCCESS;
}

dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags)
{
	// Make sure the data is in right format.
	dtMeshHeader* header = (dtMeshHeader*)data;
	if (header->magic != DT_NAVMESH_MAGIC)
		return DT_FAILURE | DT_WRONG_MAGIC;
	if (header->version != DT_NAVMESH_VERSION)
		return DT_FAILURE | DT_WRONG_VERSION;

	dtNavMeshParams params;
	dtVcopy(params.orig, header->bmin);
	params.tileWidth = header->bmax[0] - header->bmin[0];
	params.tileHeight = header->bmax[2] - header->bmin[2];
	params.maxTiles = 1;
	params.maxPolys = header->polyCount;
	
	dtStatus status = init(&params);
	if (dtStatusFailed(status))
		return status;

	return addTile(data, dataSize, flags, 0, 0);
}

/// @par
///
/// @note The parameters are created automatically when the single tile
/// initialization is performed.
const dtNavMeshParams* dtNavMesh::getParams() const
{
	return &m_params;
}

//////////////////////////////////////////////////////////////////////////////////////////
int dtNavMesh::findConnectingPolys(const float* va, const float* vb,
								   const dtMeshTile* tile, int side,
								   dtPolyRef* con, float* conarea, int maxcon) const
{
	if (!tile) return 0;
	
	float amin[2], amax[2];
	calcSlabEndPoints(va,vb, amin,amax, side);
	const float apos = getSlabCoord(va, side);

	// Remove links pointing to 'side' and compact the links array. 
	float bmin[2], bmax[2];
	unsigned short m = DT_EXT_LINK | (unsigned short)side;
	int n = 0;
	
	dtPolyRef base = getPolyRefBase(tile);
	
	for (int i = 0; i < tile->header->polyCount; ++i)
	{
		dtPoly* poly = &tile->polys[i];
		const int nv = poly->vertCount;
		for (int j = 0; j < nv; ++j)
		{
			// Skip edges which do not point to the right side.
			if (poly->neis[j] != m) continue;
			
			const float* vc = &tile->verts[poly->verts[j]*3];
			const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3];
			const float bpos = getSlabCoord(vc, side);
			
			// Segments are not close enough.
			if (dtAbs(apos-bpos) > 0.01f)
				continue;
			
			// Check if the segments touch.
			calcSlabEndPoints(vc,vd, bmin,bmax, side);
			
			if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue;
			
			// Add return value.
			if (n < maxcon)
			{
				conarea[n*2+0] = dtMax(amin[0], bmin[0]);
				conarea[n*2+1] = dtMin(amax[0], bmax[0]);
				con[n] = base | (dtPolyRef)i;
				n++;
			}
			break;
		}
	}
	return n;
}

void dtNavMesh::unconnectExtLinks(dtMeshTile* tile, dtMeshTile* target)
{
	if (!tile || !target) return;

	const unsigned int targetNum = decodePolyIdTile(getTileRef(target));

	for (int i = 0; i < tile->header->polyCount; ++i)
	{
		dtPoly* poly = &tile->polys[i];
		unsigned int j = poly->firstLink;
		unsigned int pj = DT_NULL_LINK;
		while (j != DT_NULL_LINK)
		{
			if (tile->links[j].side != 0xff &&
				decodePolyIdTile(tile->links[j].ref) == targetNum)
			{
				// Revove link.
				unsigned int nj = tile->links[j].next;
				if (pj == DT_NULL_LINK)
					poly->firstLink = nj;
				else
					tile->links[pj].next = nj;
				freeLink(tile, j);
				j = nj;
			}
			else
			{
				// Advance
				pj = j;
				j = tile->links[j].next;
			}
		}
	}
}

void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
	if (!tile) return;
	
	// Connect border links.
	for (int i = 0; i < tile->header->polyCount; ++i)
	{
		dtPoly* poly = &tile->polys[i];

		// Create new links.
//		unsigned short m = DT_EXT_LINK | (unsigned short)side;
		
		const int nv = poly->vertCount;
		for (int j = 0; j < nv; ++j)
		{
			// Skip non-portal edges.
			if ((poly->neis[j] & DT_EXT_LINK) == 0)
				continue;
			
			const int dir = (int)(poly->neis[j] & 0xff);
			if (side != -1 && dir != side)
				continue;
			
			// Create new links
			const float* va = &tile->verts[poly->verts[j]*3];
			const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
			dtPolyRef nei[4];
			float neia[4*2];
			int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4);
			for (int k = 0; k < nnei; ++k)
			{
				unsigned int idx = allocLink(tile);
				if (idx != DT_NULL_LINK)
				{
					dtLink* link = &tile->links[idx];
					link->ref = nei[k];
					link->edge = (unsigned char)j;
					link->side = (unsigned char)dir;
					
					link->next = poly->firstLink;
					poly->firstLink = idx;

					// Compress portal limits to a byte value.
					if (dir == 0 || dir == 4)
					{
						float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]);
						float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]);
						if (tmin > tmax)
							dtSwap(tmin,tmax);
						link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
						link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
					}
					else if (dir == 2 || dir == 6)
					{
						float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]);
						float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]);
						if (tmin > tmax)
							dtSwap(tmin,tmax);
						link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
						link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
					}
				}
			}
		}
	}
}

void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
	if (!tile) return;
	
	// Connect off-mesh links.
	// We are interested on links which land from target tile to this tile.
	const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side);
	
	for (int i = 0; i < target->header->offMeshConCount; ++i)
	{
		dtOffMeshConnection* targetCon = &target->offMeshCons[i];
		if (targetCon->side != oppositeSide)
			continue;

		dtPoly* targetPoly = &target->polys[targetCon->poly];
		// Skip off-mesh connections which start location could not be connected at all.
		if (targetPoly->firstLink == DT_NULL_LINK)
			continue;
		
		const float ext[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad };
		
		// Find polygon to connect to.
		const float* p = &targetCon->pos[3];
		float nearestPt[3];
		dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt);
		if (!ref)
			continue;
		// findNearestPoly may return too optimistic results, further check to make sure. 
		if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad))
			continue;
		// Make sure the location is on current mesh.
		float* v = &target->verts[targetPoly->verts[1]*3];
		dtVcopy(v, nearestPt);
				
		// Link off-mesh connection to target poly.
		unsigned int idx = allocLink(target);
		if (idx != DT_NULL_LINK)
		{
			dtLink* link = &target->links[idx];
			link->ref = ref;
			link->edge = (unsigned char)1;
			link->side = oppositeSide;
			link->bmin = link->bmax = 0;
			// Add to linked list.
			link->next = targetPoly->firstLink;
			targetPoly->firstLink = idx;
		}
		
		// Link target poly to off-mesh connection.
		if (targetCon->flags & DT_OFFMESH_CON_BIDIR)
		{
			unsigned int tidx = allocLink(tile);
			if (tidx != DT_NULL_LINK)
			{
				const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
				dtPoly* landPoly = &tile->polys[landPolyIdx];
				dtLink* link = &tile->links[tidx];
				link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly);
				link->edge = 0xff;
				link->side = (unsigned char)(side == -1 ? 0xff : side);
				link->bmin = link->bmax = 0;
				// Add to linked list.
				link->next = landPoly->firstLink;
				landPoly->firstLink = tidx;
			}
		}
	}

}

void dtNavMesh::connectIntLinks(dtMeshTile* tile)
{
	if (!tile) return;

	dtPolyRef base = getPolyRefBase(tile);

	for (int i = 0; i < tile->header->polyCount; ++i)
	{
		dtPoly* poly = &tile->polys[i];
		poly->firstLink = DT_NULL_LINK;

		if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
			continue;
			
		// Build edge links backwards so that the links will be
		// in the linked list from lowest index to highest.
		for (int j = poly->vertCount-1; j >= 0; --j)
		{
			// Skip hard and non-internal edges.
			if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;

			unsigned int idx = allocLink(tile);
			if (idx != DT_NULL_LINK)
			{
				dtLink* link = &tile->links[idx];
				link->ref = base | (dtPolyRef)(poly->neis[j]-1);
				link->edge = (unsigned char)j;
				link->side = 0xff;
				link->bmin = link->bmax = 0;
				// Add to linked list.
				link->next = poly->firstLink;
				poly->firstLink = idx;
			}
		}			
	}
}

void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
{
	if (!tile) return;
	
	dtPolyRef base = getPolyRefBase(tile);
	
	// Base off-mesh connection start points.
	for (int i = 0; i < tile->header->offMeshConCount; ++i)
	{
		dtOffMeshConnection* con = &tile->offMeshCons[i];
		dtPoly* poly = &tile->polys[con->poly];
	
		const float ext[3] = { con->rad, tile->header->walkableClimb, con->rad };
		
		// Find polygon to connect to.
		const float* p = &con->pos[0]; // First vertex
		float nearestPt[3];
		dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt);
		if (!ref) continue;
		// findNearestPoly may return too optimistic results, further check to make sure. 
		if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad))
			continue;
		// Make sure the location is on current mesh.
		float* v = &tile->verts[poly->verts[0]*3];
		dtVcopy(v, nearestPt);

		// Link off-mesh connection to target poly.
		unsigned int idx = allocLink(tile);
		if (idx != DT_NULL_LINK)
		{
			dtLink* link = &tile->links[idx];
			link->ref = ref;
			link->edge = (unsigned char)0;
			link->side = 0xff;
			link->bmin = link->bmax = 0;
			// Add to linked list.
			link->next = poly->firstLink;
			poly->firstLink = idx;
		}

		// Start end-point is always connect back to off-mesh connection. 
		unsigned int tidx = allocLink(tile);
		if (tidx != DT_NULL_LINK)
		{
			const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
			dtPoly* landPoly = &tile->polys[landPolyIdx];
			dtLink* link = &tile->links[tidx];
			link->ref = base | (dtPolyRef)(con->poly);
			link->edge = 0xff;
			link->side = 0xff;
			link->bmin = link->bmax = 0;
			// Add to linked list.
			link->next = landPoly->firstLink;
			landPoly->firstLink = tidx;
		}
	}
}

void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
{
	const dtMeshTile* tile = 0;
	const dtPoly* poly = 0;
	getTileAndPolyByRefUnsafe(ref, &tile, &poly);
	
	// Off-mesh connections don't have detail polygons.
	if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
	{
		const float* v0 = &tile->verts[poly->verts[0]*3];
		const float* v1 = &tile->verts[poly->verts[1]*3];
		const float d0 = dtVdist(pos, v0);
		const float d1 = dtVdist(pos, v1);
		const float u = d0 / (d0+d1);
		dtVlerp(closest, v0, v1, u);
		if (posOverPoly)
			*posOverPoly = false;
		return;
	}
	
	const unsigned int ip = (unsigned int)(poly - tile->polys);
	const dtPolyDetail* pd = &tile->detailMeshes[ip];
	
	// Clamp point to be inside the polygon.
	float verts[DT_VERTS_PER_POLYGON*3];	
	float edged[DT_VERTS_PER_POLYGON];
	float edget[DT_VERTS_PER_POLYGON];
	const int nv = poly->vertCount;
	for (int i = 0; i < nv; ++i)
		dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
	
	dtVcopy(closest, pos);
	if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
	{
		// Point is outside the polygon, dtClamp to nearest edge.
		float dmin = FLT_MAX;
		int imin = -1;
		for (int i = 0; i < nv; ++i)
		{
			if (edged[i] < dmin)
			{
				dmin = edged[i];
				imin = i;
			}
		}
		const float* va = &verts[imin*3];
		const float* vb = &verts[((imin+1)%nv)*3];
		dtVlerp(closest, va, vb, edget[imin]);
		
		if (posOverPoly)
			*posOverPoly = false;
	}
	else
	{
		if (posOverPoly)
			*posOverPoly = true;
	}
	
	// Find height at the location.
	for (int j = 0; j < pd->triCount; ++j)
	{
		const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
		const float* v[3];
		for (int k = 0; k < 3; ++k)
		{
			if (t[k] < poly->vertCount)
				v[k] = &tile->verts[poly->verts[t[k]]*3];
			else
				v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
		}
		float h;
		if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
		{
			closest[1] = h;
			break;
		}
	}
}

dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,
										   const float* center, const float* extents,
										   float* nearestPt) const
{
	float bmin[3], bmax[3];
	dtVsub(bmin, center, extents);
	dtVadd(bmax, center, extents);
	
	// Get nearby polygons from proximity grid.
	dtPolyRef polys[128];
	int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128);
	
	// Find nearest polygon amongst the nearby polygons.
	dtPolyRef nearest = 0;
	float nearestDistanceSqr = FLT_MAX;
	for (int i = 0; i < polyCount; ++i)
	{
		dtPolyRef ref = polys[i];
		float closestPtPoly[3];
		float diff[3];
		bool posOverPoly = false;
		float d;
		closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly);

		// If a point is directly over a polygon and closer than
		// climb height, favor that instead of straight line nearest point.
		dtVsub(diff, center, closestPtPoly);
		if (posOverPoly)
		{
			d = dtAbs(diff[1]) - tile->header->walkableClimb;
			d = d > 0 ? d*d : 0;			
		}
		else
		{
			d = dtVlenSqr(diff);
		}
		
		if (d < nearestDistanceSqr)
		{
			dtVcopy(nearestPt, closestPtPoly);
			nearestDistanceSqr = d;
			nearest = ref;
		}
	}
	
	return nearest;
}

int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
								   dtPolyRef* polys, const int maxPolys) const
{
	if (tile->bvTree)
	{
		const dtBVNode* node = &tile->bvTree[0];
		const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
		const float* tbmin = tile->header->bmin;
		const float* tbmax = tile->header->bmax;
		const float qfac = tile->header->bvQuantFactor;
		
		// Calculate quantized box
		unsigned short bmin[3], bmax[3];
		// dtClamp query box to world box.
		float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
		float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
		float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
		float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
		float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
		float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
		// Quantize
		bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
		bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
		bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
		bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
		bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
		bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
		
		// Traverse tree
		dtPolyRef base = getPolyRefBase(tile);
		int n = 0;
		while (node < end)
		{
			const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
			const bool isLeafNode = node->i >= 0;
			
			if (isLeafNode && overlap)
			{
				if (n < maxPolys)
					polys[n++] = base | (dtPolyRef)node->i;
			}
			
			if (overlap || isLeafNode)
				node++;
			else
			{
				const int escapeIndex = -node->i;
				node += escapeIndex;
			}
		}
		
		return n;
	}
	else
	{
		float bmin[3], bmax[3];
		int n = 0;
		dtPolyRef base = getPolyRefBase(tile);
		for (int i = 0; i < tile->header->polyCount; ++i)
		{
			dtPoly* p = &tile->polys[i];
			// Do not return off-mesh connection polygons.
			if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
				continue;
			// Calc polygon bounds.
			const float* v = &tile->verts[p->verts[0]*3];
			dtVcopy(bmin, v);
			dtVcopy(bmax, v);
			for (int j = 1; j < p->vertCount; ++j)
			{
				v = &tile->verts[p->verts[j]*3];
				dtVmin(bmin, v);
				dtVmax(bmax, v);
			}
			if (dtOverlapBounds(qmin,qmax, bmin,bmax))
			{
				if (n < maxPolys)
					polys[n++] = base | (dtPolyRef)i;
			}
		}
		return n;
	}
}

/// @par
///
/// The add operation will fail if the data is in the wrong format, the allocated tile
/// space is full, or there is a tile already at the specified reference.
///
/// The lastRef parameter is used to restore a tile with the same tile
/// reference it had previously used.  In this case the #dtPolyRef's for the
/// tile will be restored to the same values they were before the tile was 
/// removed.
///
/// @see dtCreateNavMeshData, #removeTile
dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags,
							dtTileRef lastRef, dtTileRef* result)
{
	// Make sure the data is in right format.
	dtMeshHeader* header = (dtMeshHeader*)data;
	if (header->magic != DT_NAVMESH_MAGIC)
		return DT_FAILURE | DT_WRONG_MAGIC;
	if (header->version != DT_NAVMESH_VERSION)
		return DT_FAILURE | DT_WRONG_VERSION;
		
	// Make sure the location is free.
	if (getTileAt(header->x, header->y, header->layer))
		return DT_FAILURE;
		
	// Allocate a tile.
	dtMeshTile* tile = 0;
	if (!lastRef)
	{
		if (m_nextFree)
		{
			tile = m_nextFree;
			m_nextFree = tile->next;
			tile->next = 0;
		}
	}
	else
	{
		// Try to relocate the tile to specific index with same salt.
		int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef);
		if (tileIndex >= m_maxTiles)
			return DT_FAILURE | DT_OUT_OF_MEMORY;
		// Try to find the specific tile id from the free list.
		dtMeshTile* target = &m_tiles[tileIndex];
		dtMeshTile* prev = 0;
		tile = m_nextFree;
		while (tile && tile != target)
		{
			prev = tile;
			tile = tile->next;
		}
		// Could not find the correct location.
		if (tile != target)
			return DT_FAILURE | DT_OUT_OF_MEMORY;
		// Remove from freelist
		if (!prev)
			m_nextFree = tile->next;
		else
			prev->next = tile->next;

		// Restore salt.
		tile->salt = decodePolyIdSalt((dtPolyRef)lastRef);
	}

	// Make sure we could allocate a tile.
	if (!tile)
		return DT_FAILURE | DT_OUT_OF_MEMORY;
	
	// Insert tile into the position lut.
	int h = computeTileHash(header->x, header->y, m_tileLutMask);
	tile->next = m_posLookup[h];
	m_posLookup[h] = tile;
	
	// Patch header pointers.
	const int headerSize = dtAlign4(sizeof(dtMeshHeader));
	const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
	const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
	const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
	const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
	const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
	const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
	const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
	const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
	
	unsigned char* d = data + headerSize;
	tile->verts = (float*)d; d += vertsSize;
	tile->polys = (dtPoly*)d; d += polysSize;
	tile->links = (dtLink*)d; d += linksSize;
	tile->detailMeshes = (dtPolyDetail*)d; d += detailMeshesSize;
	tile->detailVerts = (float*)d; d += detailVertsSize;
	tile->detailTris = (unsigned char*)d; d += detailTrisSize;
	tile->bvTree = (dtBVNode*)d; d += bvtreeSize;
	tile->offMeshCons = (dtOffMeshConnection*)d; d += offMeshLinksSize;

	// If there are no items in the bvtree, reset the tree pointer.
	if (!bvtreeSize)
		tile->bvTree = 0;

	// Build links freelist
	tile->linksFreeList = 0;
	tile->links[header->maxLinkCount-1].next = DT_NULL_LINK;
	for (int i = 0; i < header->maxLinkCount-1; ++i)
		tile->links[i].next = i+1;

	// Init tile.
	tile->header = header;
	tile->data = data;
	tile->dataSize = dataSize;
	tile->flags = flags;

	connectIntLinks(tile);
	baseOffMeshLinks(tile);

	// Create connections with neighbour tiles.
	static const int MAX_NEIS = 32;
	dtMeshTile* neis[MAX_NEIS];
	int nneis;
	
	// Connect with layers in current tile.
	nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS);
	for (int j = 0; j < nneis; ++j)
	{
		if (neis[j] != tile)
		{
			connectExtLinks(tile, neis[j], -1);
			connectExtLinks(neis[j], tile, -1);
		}
		connectExtOffMeshLinks(tile, neis[j], -1);
		connectExtOffMeshLinks(neis[j], tile, -1);
	}
	
	// Connect with neighbour tiles.
	for (int i = 0; i < 8; ++i)
	{
		nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS);
		for (int j = 0; j < nneis; ++j)
		{
			connectExtLinks(tile, neis[j], i);
			connectExtLinks(neis[j], tile, dtOppositeTile(i));
			connectExtOffMeshLinks(tile, neis[j], i);
			connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i));
		}
	}
	
	if (result)
		*result = getTileRef(tile);
	
	return DT_SUCCESS;
}

const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const
{
	// Find tile based on hash.
	int h = computeTileHash(x,y,m_tileLutMask);
	dtMeshTile* tile = m_posLookup[h];
	while (tile)
	{
		if (tile->header &&
			tile->header->x == x &&
			tile->header->y == y &&
			tile->header->layer == layer)
		{
			return tile;
		}
		tile = tile->next;
	}
	return 0;
}

int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const
{
	int nx = x, ny = y;
	switch (side)
	{
		case 0: nx++; break;
		case 1: nx++; ny++; break;
		case 2: ny++; break;
		case 3: nx--; ny++; break;
		case 4: nx--; break;
		case 5: nx--; ny--; break;
		case 6: ny--; break;
		case 7: nx++; ny--; break;
	};

	return getTilesAt(nx, ny, tiles, maxTiles);
}

int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const
{
	int n = 0;
	
	// Find tile based on hash.
	int h = computeTileHash(x,y,m_tileLutMask);
	dtMeshTile* tile = m_posLookup[h];
	while (tile)
	{
		if (tile->header &&
			tile->header->x == x &&
			tile->header->y == y)
		{
			if (n < maxTiles)
				tiles[n++] = tile;
		}
		tile = tile->next;
	}
	
	return n;
}

/// @par
///
/// This function will not fail if the tiles array is too small to hold the
/// entire result set.  It will simply fill the array to capacity.
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const
{
	int n = 0;
	
	// Find tile based on hash.
	int h = computeTileHash(x,y,m_tileLutMask);
	dtMeshTile* tile = m_posLookup[h];
	while (tile)
	{
		if (tile->header &&
			tile->header->x == x &&
			tile->header->y == y)
		{
			if (n < maxTiles)
				tiles[n++] = tile;
		}
		tile = tile->next;
	}
	
	return n;
}


dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const
{
	// Find tile based on hash.
	int h = computeTileHash(x,y,m_tileLutMask);
	dtMeshTile* tile = m_posLookup[h];
	while (tile)
	{
		if (tile->header &&
			tile->header->x == x &&
			tile->header->y == y &&
			tile->header->layer == layer)
		{
			return getTileRef(tile);
		}
		tile = tile->next;
	}
	return 0;
}

const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const
{
	if (!ref)
		return 0;
	unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
	unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
	if ((int)tileIndex >= m_maxTiles)
		return 0;
	const dtMeshTile* tile = &m_tiles[tileIndex];
	if (tile->salt != tileSalt)
		return 0;
	return tile;
}

int dtNavMesh::getMaxTiles() const
{
	return m_maxTiles;
}

dtMeshTile* dtNavMesh::getTile(int i)
{
	return &m_tiles[i];
}

const dtMeshTile* dtNavMesh::getTile(int i) const
{
	return &m_tiles[i];
}

void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const
{
	*tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth);
	*ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight);
}

dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
	if (!ref) return DT_FAILURE;
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
	if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
	*tile = &m_tiles[it];
	*poly = &m_tiles[it].polys[ip];
	return DT_SUCCESS;
}

/// @par
///
/// @warning Only use this function if it is known that the provided polygon
/// reference is valid. This function is faster than #getTileAndPolyByRef, but
/// it does not validate the reference.
void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	*tile = &m_tiles[it];
	*poly = &m_tiles[it].polys[ip];
}

bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const
{
	if (!ref) return false;
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return false;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
	if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
	return true;
}

/// @par
///
/// This function returns the data for the tile so that, if desired,
/// it can be added back to the navigation mesh at a later point.
///
/// @see #addTile
dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize)
{
	if (!ref)
		return DT_FAILURE | DT_INVALID_PARAM;
	unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
	unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
	if ((int)tileIndex >= m_maxTiles)
		return DT_FAILURE | DT_INVALID_PARAM;
	dtMeshTile* tile = &m_tiles[tileIndex];
	if (tile->salt != tileSalt)
		return DT_FAILURE | DT_INVALID_PARAM;
	
	// Remove tile from hash lookup.
	int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask);
	dtMeshTile* prev = 0;
	dtMeshTile* cur = m_posLookup[h];
	while (cur)
	{
		if (cur == tile)
		{
			if (prev)
				prev->next = cur->next;
			else
				m_posLookup[h] = cur->next;
			break;
		}
		prev = cur;
		cur = cur->next;
	}
	
	// Remove connections to neighbour tiles.
	// Create connections with neighbour tiles.
	static const int MAX_NEIS = 32;
	dtMeshTile* neis[MAX_NEIS];
	int nneis;
	
	// Connect with layers in current tile.
	nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS);
	for (int j = 0; j < nneis; ++j)
	{
		if (neis[j] == tile) continue;
		unconnectExtLinks(neis[j], tile);
	}
	
	// Connect with neighbour tiles.
	for (int i = 0; i < 8; ++i)
	{
		nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS);
		for (int j = 0; j < nneis; ++j)
			unconnectExtLinks(neis[j], tile);
	}
		
	// Reset tile.
	if (tile->flags & DT_TILE_FREE_DATA)
	{
		// Owns data
		dtFree(tile->data);
		tile->data = 0;
		tile->dataSize = 0;
		if (data) *data = 0;
		if (dataSize) *dataSize = 0;
	}
	else
	{
		if (data) *data = tile->data;
		if (dataSize) *dataSize = tile->dataSize;
	}

	tile->header = 0;
	tile->flags = 0;
	tile->linksFreeList = 0;
	tile->polys = 0;
	tile->verts = 0;
	tile->links = 0;
	tile->detailMeshes = 0;
	tile->detailVerts = 0;
	tile->detailTris = 0;
	tile->bvTree = 0;
	tile->offMeshCons = 0;

	// Update salt, salt should never be zero.
#ifdef DT_POLYREF64
	tile->salt = (tile->salt+1) & ((1<<DT_SALT_BITS)-1);
#else
	tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
#endif
	if (tile->salt == 0)
		tile->salt++;

	// Add to free list.
	tile->next = m_nextFree;
	m_nextFree = tile;

	return DT_SUCCESS;
}

dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const
{
	if (!tile) return 0;
	const unsigned int it = (unsigned int)(tile - m_tiles);
	return (dtTileRef)encodePolyId(tile->salt, it, 0);
}

/// @par
///
/// Example use case:
/// @code
///
/// const dtPolyRef base = navmesh->getPolyRefBase(tile);
/// for (int i = 0; i < tile->header->polyCount; ++i)
/// {
///     const dtPoly* p = &tile->polys[i];
///     const dtPolyRef ref = base | (dtPolyRef)i;
///     
///     // Use the reference to access the polygon data.
/// }
/// @endcode
dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const
{
	if (!tile) return 0;
	const unsigned int it = (unsigned int)(tile - m_tiles);
	return encodePolyId(tile->salt, it, 0);
}

struct dtTileState
{
	int magic;								// Magic number, used to identify the data.
	int version;							// Data version number.
	dtTileRef ref;							// Tile ref at the time of storing the data.
};

struct dtPolyState
{
	unsigned short flags;						// Flags (see dtPolyFlags).
	unsigned char area;							// Area ID of the polygon.
};

///  @see #storeTileState
int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const
{
	if (!tile) return 0;
	const int headerSize = dtAlign4(sizeof(dtTileState));
	const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
	return headerSize + polyStateSize;
}

/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note The state data is only valid until the tile reference changes.
/// @see #getTileStateSize, #restoreTileState
dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const
{
	// Make sure there is enough space to store the state.
	const int sizeReq = getTileStateSize(tile);
	if (maxDataSize < sizeReq)
		return DT_FAILURE | DT_BUFFER_TOO_SMALL;
		
	dtTileState* tileState = (dtTileState*)data; data += dtAlign4(sizeof(dtTileState));
	dtPolyState* polyStates = (dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
	
	// Store tile state.
	tileState->magic = DT_NAVMESH_STATE_MAGIC;
	tileState->version = DT_NAVMESH_STATE_VERSION;
	tileState->ref = getTileRef(tile);
	
	// Store per poly state.
	for (int i = 0; i < tile->header->polyCount; ++i)
	{
		const dtPoly* p = &tile->polys[i];
		dtPolyState* s = &polyStates[i];
		s->flags = p->flags;
		s->area = p->getArea();
	}
	
	return DT_SUCCESS;
}

/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's.
/// @see #storeTileState
dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize)
{
	// Make sure there is enough space to store the state.
	const int sizeReq = getTileStateSize(tile);
	if (maxDataSize < sizeReq)
		return DT_FAILURE | DT_INVALID_PARAM;
	
	const dtTileState* tileState = (const dtTileState*)data; data += dtAlign4(sizeof(dtTileState));
	const dtPolyState* polyStates = (const dtPolyState*)data; data += dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
	
	// Check that the restore is possible.
	if (tileState->magic != DT_NAVMESH_STATE_MAGIC)
		return DT_FAILURE | DT_WRONG_MAGIC;
	if (tileState->version != DT_NAVMESH_STATE_VERSION)
		return DT_FAILURE | DT_WRONG_VERSION;
	if (tileState->ref != getTileRef(tile))
		return DT_FAILURE | DT_INVALID_PARAM;
	
	// Restore per poly state.
	for (int i = 0; i < tile->header->polyCount; ++i)
	{
		dtPoly* p = &tile->polys[i];
		const dtPolyState* s = &polyStates[i];
		p->flags = s->flags;
		p->setArea(s->area);
	}
	
	return DT_SUCCESS;
}

/// @par
///
/// Off-mesh connections are stored in the navigation mesh as special 2-vertex 
/// polygons with a single edge. At least one of the vertices is expected to be 
/// inside a normal polygon. So an off-mesh connection is "entered" from a 
/// normal polygon at one of its endpoints. This is the polygon identified by 
/// the prevRef parameter.
dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const
{
	unsigned int salt, it, ip;

	if (!polyRef)
		return DT_FAILURE;
	
	// Get current polygon
	decodePolyId(polyRef, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
	const dtMeshTile* tile = &m_tiles[it];
	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
	const dtPoly* poly = &tile->polys[ip];

	// Make sure that the current poly is indeed off-mesh link.
	if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
		return DT_FAILURE;

	// Figure out which way to hand out the vertices.
	int idx0 = 0, idx1 = 1;
	
	// Find link that points to first vertex.
	for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
	{
		if (tile->links[i].edge == 0)
		{
			if (tile->links[i].ref != prevRef)
			{
				idx0 = 1;
				idx1 = 0;
			}
			break;
		}
	}
	
	dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]);
	dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]);

	return DT_SUCCESS;
}


const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const
{
	unsigned int salt, it, ip;
	
	if (!ref)
		return 0;
	
	// Get current polygon
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return 0;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
	const dtMeshTile* tile = &m_tiles[it];
	if (ip >= (unsigned int)tile->header->polyCount) return 0;
	const dtPoly* poly = &tile->polys[ip];
	
	// Make sure that the current poly is indeed off-mesh link.
	if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
		return 0;

	const unsigned int idx =  ip - tile->header->offMeshBase;
	dtAssert(idx < (unsigned int)tile->header->offMeshConCount);
	return &tile->offMeshCons[idx];
}


dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags)
{
	if (!ref) return DT_FAILURE;
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
	dtMeshTile* tile = &m_tiles[it];
	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
	dtPoly* poly = &tile->polys[ip];
	
	// Change flags.
	poly->flags = flags;
	
	return DT_SUCCESS;
}

dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const
{
	if (!ref) return DT_FAILURE;
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
	const dtMeshTile* tile = &m_tiles[it];
	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
	const dtPoly* poly = &tile->polys[ip];

	*resultFlags = poly->flags;
	
	return DT_SUCCESS;
}

dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area)
{
	if (!ref) return DT_FAILURE;
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
	dtMeshTile* tile = &m_tiles[it];
	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
	dtPoly* poly = &tile->polys[ip];
	
	poly->setArea(area);
	
	return DT_SUCCESS;
}

dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const
{
	if (!ref) return DT_FAILURE;
	unsigned int salt, it, ip;
	decodePolyId(ref, salt, it, ip);
	if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
	if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
	const dtMeshTile* tile = &m_tiles[it];
	if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
	const dtPoly* poly = &tile->polys[ip];
	
	*resultArea = poly->getArea();
	
	return DT_SUCCESS;
}