AudioMixer.cpp 79.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/*
**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
**     http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/

#define LOG_TAG "AudioMixer"
#define LOG_NDEBUG 1

#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>

#include "audio/android/audio.h"
#include "audio/android/audio_utils/include/audio_utils/primitives.h"

#include "audio/android/AudioMixerOps.h"
#include "audio/android/AudioMixer.h"

// The FCC_2 macro refers to the Fixed Channel Count of 2 for the legacy integer mixer.
#ifndef FCC_2
#define FCC_2 2
#endif

// Look for MONO_HACK for any Mono hack involving legacy mono channel to
// stereo channel conversion.

/* VERY_VERY_VERBOSE_LOGGING will show exactly which process hook and track hook is
 * being used. This is a considerable amount of log spam, so don't enable unless you
 * are verifying the hook based code.
 */
//#define VERY_VERY_VERBOSE_LOGGING
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
//define ALOGVV printf  // for test-mixer.cpp
#else
#define ALOGVV(a...) do { } while (0)
#endif

#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x)/sizeof((x)[0]))
#endif

// TODO: Move these macro/inlines to a header file.
template <typename T>
static inline
T max(const T& x, const T& y) {
    return x > y ? x : y;
}

// Set kUseNewMixer to true to use the new mixer engine always. Otherwise the
// original code will be used for stereo sinks, the new mixer for multichannel.
static const bool kUseNewMixer = false;

// Set kUseFloat to true to allow floating input into the mixer engine.
// If kUseNewMixer is false, this is ignored or may be overridden internally
// because of downmix/upmix support.
static const bool kUseFloat = false;

// Set to default copy buffer size in frames for input processing.
static const size_t kCopyBufferFrameCount = 256;

namespace cocos2d {

// ----------------------------------------------------------------------------

template <typename T>
T min(const T& a, const T& b)
{
    return a < b ? a : b;
}

// ----------------------------------------------------------------------------

// Ensure mConfiguredNames bitmask is initialized properly on all architectures.
// The value of 1 << x is undefined in C when x >= 32.

AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate, uint32_t maxNumTracks)
    :   mTrackNames(0), mConfiguredNames((maxNumTracks >= 32 ? 0 : 1 << maxNumTracks) - 1),
        mSampleRate(sampleRate)
{
    ALOGVV("AudioMixer constructed, frameCount: %d, sampleRate: %d", (int)frameCount, (int)sampleRate);
    ALOG_ASSERT(maxNumTracks <= MAX_NUM_TRACKS, "maxNumTracks %u > MAX_NUM_TRACKS %u",
            maxNumTracks, MAX_NUM_TRACKS);

    // AudioMixer is not yet capable of more than 32 active track inputs
    ALOG_ASSERT(32 >= MAX_NUM_TRACKS, "bad MAX_NUM_TRACKS %d", MAX_NUM_TRACKS);

    pthread_once(&sOnceControl, &sInitRoutine);

    mState.enabledTracks= 0;
    mState.needsChanged = 0;
    mState.frameCount   = frameCount;
    mState.hook         = process__nop;
    mState.outputTemp   = NULL;
    mState.resampleTemp = NULL;
//cjh    mState.mLog         = &mDummyLog;
    // mState.reserved

    // FIXME Most of the following initialization is probably redundant since
    // tracks[i] should only be referenced if (mTrackNames & (1 << i)) != 0
    // and mTrackNames is initially 0.  However, leave it here until that's verified.
    track_t* t = mState.tracks;
    for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
        t->resampler = NULL;
//cjh        t->downmixerBufferProvider = NULL;
//        t->mReformatBufferProvider = NULL;
//        t->mTimestretchBufferProvider = NULL;
        t++;
    }

}

AudioMixer::~AudioMixer()
{
    track_t* t = mState.tracks;
    for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
        delete t->resampler;
//cjh        delete t->downmixerBufferProvider;
//        delete t->mReformatBufferProvider;
//        delete t->mTimestretchBufferProvider;
        t++;
    }
    delete [] mState.outputTemp;
    delete [] mState.resampleTemp;
}

//cjh void AudioMixer::setLog(NBLog::Writer *log)
//{
//    mState.mLog = log;
//}

static inline audio_format_t selectMixerInFormat(audio_format_t inputFormat __unused) {
    return kUseFloat && kUseNewMixer ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
}

int AudioMixer::getTrackName(audio_channel_mask_t channelMask,
        audio_format_t format, int sessionId)
{
    if (!isValidPcmTrackFormat(format)) {
        ALOGE("AudioMixer::getTrackName invalid format (%#x)", format);
        return -1;
    }
    uint32_t names = (~mTrackNames) & mConfiguredNames;
    if (names != 0) {
        int n = __builtin_ctz(names);
        ALOGV("add track (%d)", n);
        // assume default parameters for the track, except where noted below
        track_t* t = &mState.tracks[n];
        t->needs = 0;

        // Integer volume.
        // Currently integer volume is kept for the legacy integer mixer.
        // Will be removed when the legacy mixer path is removed.
        t->volume[0] = UNITY_GAIN_INT;
        t->volume[1] = UNITY_GAIN_INT;
        t->prevVolume[0] = UNITY_GAIN_INT << 16;
        t->prevVolume[1] = UNITY_GAIN_INT << 16;
        t->volumeInc[0] = 0;
        t->volumeInc[1] = 0;
        t->auxLevel = 0;
        t->auxInc = 0;
        t->prevAuxLevel = 0;

        // Floating point volume.
        t->mVolume[0] = UNITY_GAIN_FLOAT;
        t->mVolume[1] = UNITY_GAIN_FLOAT;
        t->mPrevVolume[0] = UNITY_GAIN_FLOAT;
        t->mPrevVolume[1] = UNITY_GAIN_FLOAT;
        t->mVolumeInc[0] = 0.;
        t->mVolumeInc[1] = 0.;
        t->mAuxLevel = 0.;
        t->mAuxInc = 0.;
        t->mPrevAuxLevel = 0.;

        // no initialization needed
        // t->frameCount
        t->channelCount = audio_channel_count_from_out_mask(channelMask);
        t->enabled = false;
        ALOGV_IF(audio_channel_mask_get_bits(channelMask) != AUDIO_CHANNEL_OUT_STEREO,
                "Non-stereo channel mask: %d\n", channelMask);
        t->channelMask = channelMask;
        t->sessionId = sessionId;
        // setBufferProvider(name, AudioBufferProvider *) is required before enable(name)
        t->bufferProvider = NULL;
        t->buffer.raw = NULL;
        // no initialization needed
        // t->buffer.frameCount
        t->hook = NULL;
        t->in = NULL;
        t->resampler = NULL;
        t->sampleRate = mSampleRate;
        // setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name)
        t->mainBuffer = NULL;
        t->auxBuffer = NULL;
        t->mInputBufferProvider = NULL;
//cjh        t->mReformatBufferProvider = NULL;
//        t->downmixerBufferProvider = NULL;
//        t->mPostDownmixReformatBufferProvider = NULL;
//        t->mTimestretchBufferProvider = NULL;
        t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
        t->mFormat = format;
        t->mMixerInFormat = selectMixerInFormat(format);
        t->mDownmixRequiresFormat = AUDIO_FORMAT_INVALID; // no format required
        t->mMixerChannelMask = audio_channel_mask_from_representation_and_bits(
                AUDIO_CHANNEL_REPRESENTATION_POSITION, AUDIO_CHANNEL_OUT_STEREO);
        t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask);
        ALOGVV("t->mMixerChannelCount: %d", t->mMixerChannelCount);
        t->mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
        // Check the downmixing (or upmixing) requirements.
        status_t status = t->prepareForDownmix();
        if (status != OK) {
            ALOGE("AudioMixer::getTrackName invalid channelMask (%#x)", channelMask);
            return -1;
        }
        // prepareForDownmix() may change mDownmixRequiresFormat
        ALOGVV("mMixerFormat:%#x  mMixerInFormat:%#x\n", t->mMixerFormat, t->mMixerInFormat);
        t->prepareForReformat();
        mTrackNames |= 1 << n;
        ALOGVV("getTrackName return: %d", TRACK0 + n);
        return TRACK0 + n;
    }
    ALOGE("AudioMixer::getTrackName out of available tracks");
    return -1;
}

void AudioMixer::invalidateState(uint32_t mask)
{
    if (mask != 0) {
        mState.needsChanged |= mask;
        mState.hook = process__validate;
    }
 }

// Called when channel masks have changed for a track name
// TODO: Fix DownmixerBufferProvider not to (possibly) change mixer input format,
// which will simplify this logic.
bool AudioMixer::setChannelMasks(int name,
        audio_channel_mask_t trackChannelMask, audio_channel_mask_t mixerChannelMask) {
    track_t &track = mState.tracks[name];
    ALOGVV("AudioMixer::setChannelMask ...");
    if (trackChannelMask == track.channelMask
            && mixerChannelMask == track.mMixerChannelMask) {
        ALOGVV("No need to change channel mask ...");
        return false;  // no need to change
    }
    // always recompute for both channel masks even if only one has changed.
    const uint32_t trackChannelCount = audio_channel_count_from_out_mask(trackChannelMask);
    const uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mixerChannelMask);
    const bool mixerChannelCountChanged = track.mMixerChannelCount != mixerChannelCount;

    ALOG_ASSERT((trackChannelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX)
            && trackChannelCount
            && mixerChannelCount);
    track.channelMask = trackChannelMask;
    track.channelCount = trackChannelCount;
    track.mMixerChannelMask = mixerChannelMask;
    track.mMixerChannelCount = mixerChannelCount;

    // channel masks have changed, does this track need a downmixer?
    // update to try using our desired format (if we aren't already using it)
    const audio_format_t prevDownmixerFormat = track.mDownmixRequiresFormat;
    const status_t status = mState.tracks[name].prepareForDownmix();
    ALOGE_IF(status != OK,
            "prepareForDownmix error %d, track channel mask %#x, mixer channel mask %#x",
            status, track.channelMask, track.mMixerChannelMask);

    if (prevDownmixerFormat != track.mDownmixRequiresFormat) {
        track.prepareForReformat(); // because of downmixer, track format may change!
    }

    if (track.resampler && mixerChannelCountChanged) {
        // resampler channels may have changed.
        const uint32_t resetToSampleRate = track.sampleRate;
        delete track.resampler;
        track.resampler = NULL;
        track.sampleRate = mSampleRate; // without resampler, track rate is device sample rate.
        // recreate the resampler with updated format, channels, saved sampleRate.
        track.setResampler(resetToSampleRate /*trackSampleRate*/, mSampleRate /*devSampleRate*/);
    }
    return true;
}

void AudioMixer::track_t::unprepareForDownmix() {
    ALOGV("AudioMixer::unprepareForDownmix(%p)", this);

    mDownmixRequiresFormat = AUDIO_FORMAT_INVALID;
//cjh    if (downmixerBufferProvider != NULL) {
//        // this track had previously been configured with a downmixer, delete it
//        ALOGV(" deleting old downmixer");
//        delete downmixerBufferProvider;
//        downmixerBufferProvider = NULL;
//        reconfigureBufferProviders();
//    } else
    {
        ALOGV(" nothing to do, no downmixer to delete");
    }
}

status_t AudioMixer::track_t::prepareForDownmix()
{
    ALOGV("AudioMixer::prepareForDownmix(%p) with mask 0x%x",
            this, channelMask);

    // discard the previous downmixer if there was one
    unprepareForDownmix();
    // MONO_HACK Only remix (upmix or downmix) if the track and mixer/device channel masks
    // are not the same and not handled internally, as mono -> stereo currently is.
    if (channelMask == mMixerChannelMask
            || (channelMask == AUDIO_CHANNEL_OUT_MONO
                    && mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO)) {
        return NO_ERROR;
    }
    // DownmixerBufferProvider is only used for position masks.
//cjh    if (audio_channel_mask_get_representation(channelMask)
//                == AUDIO_CHANNEL_REPRESENTATION_POSITION
//            && DownmixerBufferProvider::isMultichannelCapable()) {
//        DownmixerBufferProvider* pDbp = new DownmixerBufferProvider(channelMask,
//                mMixerChannelMask,
//                AUDIO_FORMAT_PCM_16_BIT /* TODO: use mMixerInFormat, now only PCM 16 */,
//                sampleRate, sessionId, kCopyBufferFrameCount);
//
//        if (pDbp->isValid()) { // if constructor completed properly
//            mDownmixRequiresFormat = AUDIO_FORMAT_PCM_16_BIT; // PCM 16 bit required for downmix
//            downmixerBufferProvider = pDbp;
//            reconfigureBufferProviders();
//            return NO_ERROR;
//        }
//        delete pDbp;
//    }
//
//    // Effect downmixer does not accept the channel conversion.  Let's use our remixer.
//    RemixBufferProvider* pRbp = new RemixBufferProvider(channelMask,
//            mMixerChannelMask, mMixerInFormat, kCopyBufferFrameCount);
//    // Remix always finds a conversion whereas Downmixer effect above may fail.
//    downmixerBufferProvider = pRbp;
//    reconfigureBufferProviders();
    return NO_ERROR;
}

void AudioMixer::track_t::unprepareForReformat() {
    ALOGV("AudioMixer::unprepareForReformat(%p)", this);
    bool requiresReconfigure = false;
//cjh    if (mReformatBufferProvider != NULL) {
//        delete mReformatBufferProvider;
//        mReformatBufferProvider = NULL;
//        requiresReconfigure = true;
//    }
//    if (mPostDownmixReformatBufferProvider != NULL) {
//        delete mPostDownmixReformatBufferProvider;
//        mPostDownmixReformatBufferProvider = NULL;
//        requiresReconfigure = true;
//    }
    if (requiresReconfigure) {
        reconfigureBufferProviders();
    }
} 

status_t AudioMixer::track_t::prepareForReformat()
{
    ALOGV("AudioMixer::prepareForReformat(%p) with format %#x", this, mFormat);
    // discard previous reformatters
    unprepareForReformat();
    // only configure reformatters as needed
    const audio_format_t targetFormat = mDownmixRequiresFormat != AUDIO_FORMAT_INVALID
            ? mDownmixRequiresFormat : mMixerInFormat;
    bool requiresReconfigure = false;
//cjh    if (mFormat != targetFormat) {
//        mReformatBufferProvider = new ReformatBufferProvider(
//                audio_channel_count_from_out_mask(channelMask),
//                mFormat,
//                targetFormat,
//                kCopyBufferFrameCount);
//        requiresReconfigure = true;
//    }
//    if (targetFormat != mMixerInFormat) {
//        mPostDownmixReformatBufferProvider = new ReformatBufferProvider(
//                audio_channel_count_from_out_mask(mMixerChannelMask),
//                targetFormat,
//                mMixerInFormat,
//                kCopyBufferFrameCount);
//        requiresReconfigure = true;
//    }
    if (requiresReconfigure) {
        reconfigureBufferProviders();
    }
    ALOGVV("prepareForReformat return ...");
    return NO_ERROR;
}

void AudioMixer::track_t::reconfigureBufferProviders()
{
    bufferProvider = mInputBufferProvider;
//cjh    if (mReformatBufferProvider) {
//        mReformatBufferProvider->setBufferProvider(bufferProvider);
//        bufferProvider = mReformatBufferProvider;
//    }
//    if (downmixerBufferProvider) {
//        downmixerBufferProvider->setBufferProvider(bufferProvider);
//        bufferProvider = downmixerBufferProvider;
//    }
//    if (mPostDownmixReformatBufferProvider) {
//        mPostDownmixReformatBufferProvider->setBufferProvider(bufferProvider);
//        bufferProvider = mPostDownmixReformatBufferProvider;
//    }
//    if (mTimestretchBufferProvider) {
//        mTimestretchBufferProvider->setBufferProvider(bufferProvider);
//        bufferProvider = mTimestretchBufferProvider;
//    }
}

void AudioMixer::deleteTrackName(int name)
{
    ALOGV("AudioMixer::deleteTrackName(%d)", name);
    name -= TRACK0;
    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
    ALOGV("deleteTrackName(%d)", name);
    track_t& track(mState.tracks[ name ]);
    if (track.enabled) {
        track.enabled = false;
        invalidateState(1<<name);
    }
    // delete the resampler
    delete track.resampler;
    track.resampler = NULL;
    // delete the downmixer
    mState.tracks[name].unprepareForDownmix();
    // delete the reformatter
    mState.tracks[name].unprepareForReformat();
    // delete the timestretch provider
//cjh    delete track.mTimestretchBufferProvider;
//    track.mTimestretchBufferProvider = NULL;
    mTrackNames &= ~(1<<name);
}

void AudioMixer::enable(int name)
{
    name -= TRACK0;
    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
    track_t& track = mState.tracks[name];

    if (!track.enabled) {
        track.enabled = true;
        ALOGV("enable(%d)", name);
        invalidateState(1 << name);
    }
}

void AudioMixer::disable(int name)
{
    name -= TRACK0;
    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
    track_t& track = mState.tracks[name];

    if (track.enabled) {
        track.enabled = false;
        ALOGV("disable(%d)", name);
        invalidateState(1 << name);
    }
}

/* Sets the volume ramp variables for the AudioMixer.
 *
 * The volume ramp variables are used to transition from the previous
 * volume to the set volume.  ramp controls the duration of the transition.
 * Its value is typically one state framecount period, but may also be 0,
 * meaning "immediate."
 *
 * FIXME: 1) Volume ramp is enabled only if there is a nonzero integer increment
 * even if there is a nonzero floating point increment (in that case, the volume
 * change is immediate).  This restriction should be changed when the legacy mixer
 * is removed (see #2).
 * FIXME: 2) Integer volume variables are used for Legacy mixing and should be removed
 * when no longer needed.
 *
 * @param newVolume set volume target in floating point [0.0, 1.0].
 * @param ramp number of frames to increment over. if ramp is 0, the volume
 * should be set immediately.  Currently ramp should not exceed 65535 (frames).
 * @param pIntSetVolume pointer to the U4.12 integer target volume, set on return.
 * @param pIntPrevVolume pointer to the U4.28 integer previous volume, set on return.
 * @param pIntVolumeInc pointer to the U4.28 increment per output audio frame, set on return.
 * @param pSetVolume pointer to the float target volume, set on return.
 * @param pPrevVolume pointer to the float previous volume, set on return.
 * @param pVolumeInc pointer to the float increment per output audio frame, set on return.
 * @return true if the volume has changed, false if volume is same.
 */
static inline bool setVolumeRampVariables(float newVolume, int32_t ramp,
        int16_t *pIntSetVolume, int32_t *pIntPrevVolume, int32_t *pIntVolumeInc,
        float *pSetVolume, float *pPrevVolume, float *pVolumeInc) {
    // check floating point volume to see if it is identical to the previously
    // set volume.
    // We do not use a tolerance here (and reject changes too small)
    // as it may be confusing to use a different value than the one set.
    // If the resulting volume is too small to ramp, it is a direct set of the volume.
    if (newVolume == *pSetVolume) {
        return false;
    }
    if (newVolume < 0) {
        newVolume = 0; // should not have negative volumes
    } else {
        switch (fpclassify(newVolume)) {
        case FP_SUBNORMAL:
        case FP_NAN:
            newVolume = 0;
            break;
        case FP_ZERO:
            break; // zero volume is fine
        case FP_INFINITE:
            // Infinite volume could be handled consistently since
            // floating point math saturates at infinities,
            // but we limit volume to unity gain float.
            // ramp = 0; break;
            //
            newVolume = AudioMixer::UNITY_GAIN_FLOAT;
            break;
        case FP_NORMAL:
        default:
            // Floating point does not have problems with overflow wrap
            // that integer has.  However, we limit the volume to
            // unity gain here.
            // TODO: Revisit the volume limitation and perhaps parameterize.
            if (newVolume > AudioMixer::UNITY_GAIN_FLOAT) {
                newVolume = AudioMixer::UNITY_GAIN_FLOAT;
            }
            break;
        }
    }

    // set floating point volume ramp
    if (ramp != 0) {
        // when the ramp completes, *pPrevVolume is set to *pSetVolume, so there
        // is no computational mismatch; hence equality is checked here.
        ALOGD_IF(*pPrevVolume != *pSetVolume, "previous float ramp hasn't finished,"
                " prev:%f  set_to:%f", *pPrevVolume, *pSetVolume);
        const float inc = (newVolume - *pPrevVolume) / ramp; // could be inf, nan, subnormal
        const float maxv = max(newVolume, *pPrevVolume); // could be inf, cannot be nan, subnormal

        if (isnormal(inc) // inc must be a normal number (no subnormals, infinite, nan)
                && maxv + inc != maxv) { // inc must make forward progress
            *pVolumeInc = inc;
            // ramp is set now.
            // Note: if newVolume is 0, then near the end of the ramp,
            // it may be possible that the ramped volume may be subnormal or
            // temporarily negative by a small amount or subnormal due to floating
            // point inaccuracies.
        } else {
            ramp = 0; // ramp not allowed
        }
    }

    // compute and check integer volume, no need to check negative values
    // The integer volume is limited to "unity_gain" to avoid wrapping and other
    // audio artifacts, so it never reaches the range limit of U4.28.
    // We safely use signed 16 and 32 bit integers here.
    const float scaledVolume = newVolume * AudioMixer::UNITY_GAIN_INT; // not neg, subnormal, nan
    const int32_t intVolume = (scaledVolume >= (float)AudioMixer::UNITY_GAIN_INT) ?
            AudioMixer::UNITY_GAIN_INT : (int32_t)scaledVolume;

    // set integer volume ramp
    if (ramp != 0) {
        // integer volume is U4.12 (to use 16 bit multiplies), but ramping uses U4.28.
        // when the ramp completes, *pIntPrevVolume is set to *pIntSetVolume << 16, so there
        // is no computational mismatch; hence equality is checked here.
        ALOGD_IF(*pIntPrevVolume != *pIntSetVolume << 16, "previous int ramp hasn't finished,"
                " prev:%d  set_to:%d", *pIntPrevVolume, *pIntSetVolume << 16);
        const int32_t inc = ((intVolume << 16) - *pIntPrevVolume) / ramp;

        if (inc != 0) { // inc must make forward progress
            *pIntVolumeInc = inc;
        } else {
            ramp = 0; // ramp not allowed
        }
    }

    // if no ramp, or ramp not allowed, then clear float and integer increments
    if (ramp == 0) {
        *pVolumeInc = 0;
        *pPrevVolume = newVolume;
        *pIntVolumeInc = 0;
        *pIntPrevVolume = intVolume << 16;
    }
    *pSetVolume = newVolume;
    *pIntSetVolume = intVolume;
    return true;
}

void AudioMixer::setParameter(int name, int target, int param, void *value)
{
    name -= TRACK0;
    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
    track_t& track = mState.tracks[name];

    int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value));
    int32_t *valueBuf = reinterpret_cast<int32_t*>(value);

    switch (target) {

    case TRACK:
        switch (param) {
        case CHANNEL_MASK: {
            const audio_channel_mask_t trackChannelMask =
                static_cast<audio_channel_mask_t>(valueInt);
            if (setChannelMasks(name, trackChannelMask, track.mMixerChannelMask)) {
                ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask);
                invalidateState(1 << name);
            }
            } break;
        case MAIN_BUFFER:
            if (track.mainBuffer != valueBuf) {
                track.mainBuffer = valueBuf;
                ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf);
                invalidateState(1 << name);
            }
            break;
        case AUX_BUFFER:
            if (track.auxBuffer != valueBuf) {
                track.auxBuffer = valueBuf;
                ALOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf);
                invalidateState(1 << name);
            }
            break;
        case FORMAT: {
            audio_format_t format = static_cast<audio_format_t>(valueInt);
            if (track.mFormat != format) {
                ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format);
                track.mFormat = format;
                ALOGV("setParameter(TRACK, FORMAT, %#x)", format);
                track.prepareForReformat();
                invalidateState(1 << name);
            }
            } break;
        // FIXME do we want to support setting the downmix type from AudioMixerController?
        //         for a specific track? or per mixer?
        /* case DOWNMIX_TYPE:
            break          */
        case MIXER_FORMAT: {
            audio_format_t format = static_cast<audio_format_t>(valueInt);
            if (track.mMixerFormat != format) {
                track.mMixerFormat = format;
                ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format);
            }
            } break;
        case MIXER_CHANNEL_MASK: {
            const audio_channel_mask_t mixerChannelMask =
                    static_cast<audio_channel_mask_t>(valueInt);
            if (setChannelMasks(name, track.channelMask, mixerChannelMask)) {
                ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask);
                invalidateState(1 << name);
            }
            } break;
        default:
            LOG_ALWAYS_FATAL("setParameter track: bad param %d", param);
        }
        break;

    case RESAMPLE:
        switch (param) {
        case SAMPLE_RATE:
            ALOG_ASSERT(valueInt > 0, "bad sample rate %d", valueInt);
            if (track.setResampler(uint32_t(valueInt), mSampleRate)) {
                ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)",
                        uint32_t(valueInt));
                invalidateState(1 << name);
            }
            break;
        case RESET:
            track.resetResampler();
            invalidateState(1 << name);
            break;
        case REMOVE:
            delete track.resampler;
            track.resampler = NULL;
            track.sampleRate = mSampleRate;
            invalidateState(1 << name);
            break;
        default:
            LOG_ALWAYS_FATAL("setParameter resample: bad param %d", param);
        }
        break;

    case RAMP_VOLUME:
    case VOLUME:
        switch (param) {
        case AUXLEVEL:
            if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
                    target == RAMP_VOLUME ? mState.frameCount : 0,
                    &track.auxLevel, &track.prevAuxLevel, &track.auxInc,
                    &track.mAuxLevel, &track.mPrevAuxLevel, &track.mAuxInc)) {
                ALOGV("setParameter(%s, AUXLEVEL: %04x)",
                        target == VOLUME ? "VOLUME" : "RAMP_VOLUME", track.auxLevel);
                invalidateState(1 << name);
            }
            break;
        default:
            if ((unsigned)param >= VOLUME0 && (unsigned)param < VOLUME0 + MAX_NUM_VOLUMES) {
                if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
                        target == RAMP_VOLUME ? mState.frameCount : 0,
                        &track.volume[param - VOLUME0], &track.prevVolume[param - VOLUME0],
                        &track.volumeInc[param - VOLUME0],
                        &track.mVolume[param - VOLUME0], &track.mPrevVolume[param - VOLUME0],
                        &track.mVolumeInc[param - VOLUME0])) {
                    ALOGV("setParameter(%s, VOLUME%d: %04x)",
                            target == VOLUME ? "VOLUME" : "RAMP_VOLUME", param - VOLUME0,
                                    track.volume[param - VOLUME0]);
                    invalidateState(1 << name);
                }
            } else {
                LOG_ALWAYS_FATAL("setParameter volume: bad param %d", param);
            }
        }
        break;
        case TIMESTRETCH:
            switch (param) {
            case PLAYBACK_RATE: {
                const AudioPlaybackRate *playbackRate =
                        reinterpret_cast<AudioPlaybackRate*>(value);
                ALOGW_IF(!isAudioPlaybackRateValid(*playbackRate),
                        "bad parameters speed %f, pitch %f",playbackRate->mSpeed,
                        playbackRate->mPitch);
                if (track.setPlaybackRate(*playbackRate)) {
                    ALOGV("setParameter(TIMESTRETCH, PLAYBACK_RATE, STRETCH_MODE, FALLBACK_MODE "
                            "%f %f %d %d",
                            playbackRate->mSpeed,
                            playbackRate->mPitch,
                            playbackRate->mStretchMode,
                            playbackRate->mFallbackMode);
                    // invalidateState(1 << name);
                }
            } break;
            default:
                LOG_ALWAYS_FATAL("setParameter timestretch: bad param %d", param);
            }
            break;

    default:
        LOG_ALWAYS_FATAL("setParameter: bad target %d", target);
    }
}

bool AudioMixer::track_t::setResampler(uint32_t trackSampleRate, uint32_t devSampleRate)
{
    if (trackSampleRate != devSampleRate || resampler != NULL) {
        if (sampleRate != trackSampleRate) {
            sampleRate = trackSampleRate;
            if (resampler == NULL) {
                ALOGV("Creating resampler from track %d Hz to device %d Hz",
                        trackSampleRate, devSampleRate);
                AudioResampler::src_quality quality;
                // force lowest quality level resampler if use case isn't music or video
                // FIXME this is flawed for dynamic sample rates, as we choose the resampler
                // quality level based on the initial ratio, but that could change later.
                // Should have a way to distinguish tracks with static ratios vs. dynamic ratios.
//cjh                if (isMusicRate(trackSampleRate)) {
                    quality = AudioResampler::DEFAULT_QUALITY;
//cjh                } else {
//                    quality = AudioResampler::DYN_LOW_QUALITY;
//                }

                // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
                // but if none exists, it is the channel count (1 for mono).
                const int resamplerChannelCount = false/*downmixerBufferProvider != NULL*/
                        ? mMixerChannelCount : channelCount;
                ALOGVV("Creating resampler:"
                        " format(%#x) channels(%d) devSampleRate(%u) quality(%d)\n",
                        mMixerInFormat, resamplerChannelCount, devSampleRate, quality);
                resampler = AudioResampler::create(
                        mMixerInFormat,
                        resamplerChannelCount,
                        devSampleRate, quality);
                resampler->setLocalTimeFreq(sLocalTimeFreq);
            }
            return true;
        }
    }
    return false;
}

bool AudioMixer::track_t::setPlaybackRate(const AudioPlaybackRate &playbackRate)
{
//cjh    if ((mTimestretchBufferProvider == NULL &&
//            fabs(playbackRate.mSpeed - mPlaybackRate.mSpeed) < AUDIO_TIMESTRETCH_SPEED_MIN_DELTA &&
//            fabs(playbackRate.mPitch - mPlaybackRate.mPitch) < AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) ||
//            isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
//        return false;
//    }
    mPlaybackRate = playbackRate;
//    if (mTimestretchBufferProvider == NULL) {
//        // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
//        // but if none exists, it is the channel count (1 for mono).
//        const int timestretchChannelCount = downmixerBufferProvider != NULL
//                ? mMixerChannelCount : channelCount;
//        mTimestretchBufferProvider = new TimestretchBufferProvider(timestretchChannelCount,
//                mMixerInFormat, sampleRate, playbackRate);
//        reconfigureBufferProviders();
//    } else {
//        reinterpret_cast<TimestretchBufferProvider*>(mTimestretchBufferProvider)
//                ->setPlaybackRate(playbackRate);
//    }
    return true;
}

/* Checks to see if the volume ramp has completed and clears the increment
 * variables appropriately.
 *
 * FIXME: There is code to handle int/float ramp variable switchover should it not
 * complete within a mixer buffer processing call, but it is preferred to avoid switchover
 * due to precision issues.  The switchover code is included for legacy code purposes
 * and can be removed once the integer volume is removed.
 *
 * It is not sufficient to clear only the volumeInc integer variable because
 * if one channel requires ramping, all channels are ramped.
 *
 * There is a bit of duplicated code here, but it keeps backward compatibility.
 */
inline void AudioMixer::track_t::adjustVolumeRamp(bool aux, bool useFloat)
{
    if (useFloat) {
        for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
            if ((mVolumeInc[i] > 0 && mPrevVolume[i] + mVolumeInc[i] >= mVolume[i]) ||
                     (mVolumeInc[i] < 0 && mPrevVolume[i] + mVolumeInc[i] <= mVolume[i])) {
                volumeInc[i] = 0;
                prevVolume[i] = volume[i] << 16;
                mVolumeInc[i] = 0.;
                mPrevVolume[i] = mVolume[i];
            } else {
                //ALOGV("ramp: %f %f %f", mVolume[i], mPrevVolume[i], mVolumeInc[i]);
                prevVolume[i] = u4_28_from_float(mPrevVolume[i]);
            }
        }
    } else {
        for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
            if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) ||
                    ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) {
                volumeInc[i] = 0;
                prevVolume[i] = volume[i] << 16;
                mVolumeInc[i] = 0.;
                mPrevVolume[i] = mVolume[i];
            } else {
                //ALOGV("ramp: %d %d %d", volume[i] << 16, prevVolume[i], volumeInc[i]);
                mPrevVolume[i]  = float_from_u4_28(prevVolume[i]);
            }
        }
    }
    /* TODO: aux is always integer regardless of output buffer type */
    if (aux) {
        if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) ||
                ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) {
            auxInc = 0;
            prevAuxLevel = auxLevel << 16;
            mAuxInc = 0.;
            mPrevAuxLevel = mAuxLevel;
        } else {
            //ALOGV("aux ramp: %d %d %d", auxLevel << 16, prevAuxLevel, auxInc);
        }
    }
}

size_t AudioMixer::getUnreleasedFrames(int name) const
{
    name -= TRACK0;
    if (uint32_t(name) < MAX_NUM_TRACKS) {
        return mState.tracks[name].getUnreleasedFrames();
    }
    return 0;
}

void AudioMixer::setBufferProvider(int name, AudioBufferProvider* bufferProvider)
{
    name -= TRACK0;
    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);

    if (mState.tracks[name].mInputBufferProvider == bufferProvider) {
        return; // don't reset any buffer providers if identical.
    }
//cjh    if (mState.tracks[name].mReformatBufferProvider != NULL) {
//        mState.tracks[name].mReformatBufferProvider->reset();
//    } else if (mState.tracks[name].downmixerBufferProvider != NULL) {
//        mState.tracks[name].downmixerBufferProvider->reset();
//    } else if (mState.tracks[name].mPostDownmixReformatBufferProvider != NULL) {
//        mState.tracks[name].mPostDownmixReformatBufferProvider->reset();
//    } else if (mState.tracks[name].mTimestretchBufferProvider != NULL) {
//        mState.tracks[name].mTimestretchBufferProvider->reset();
//    }

    mState.tracks[name].mInputBufferProvider = bufferProvider;
    mState.tracks[name].reconfigureBufferProviders();
}


void AudioMixer::process(int64_t pts)
{
    mState.hook(&mState, pts);
}


void AudioMixer::process__validate(state_t* state, int64_t pts)
{
    ALOGW_IF(!state->needsChanged,
        "in process__validate() but nothing's invalid");

    uint32_t changed = state->needsChanged;
    state->needsChanged = 0; // clear the validation flag

    // recompute which tracks are enabled / disabled
    uint32_t enabled = 0;
    uint32_t disabled = 0;
    while (changed) {
        const int i = 31 - __builtin_clz(changed);
        const uint32_t mask = 1<<i;
        changed &= ~mask;
        track_t& t = state->tracks[i];
        (t.enabled ? enabled : disabled) |= mask;
    }
    state->enabledTracks &= ~disabled;
    state->enabledTracks |=  enabled;

    // compute everything we need...
    int countActiveTracks = 0;
    // TODO: fix all16BitsStereNoResample logic to
    // either properly handle muted tracks (it should ignore them)
    // or remove altogether as an obsolete optimization.
    bool all16BitsStereoNoResample = true;
    bool resampling = false;
    bool volumeRamp = false;
    uint32_t en = state->enabledTracks;
    while (en) {
        const int i = 31 - __builtin_clz(en);
        en &= ~(1<<i);

        countActiveTracks++;
        track_t& t = state->tracks[i];
        uint32_t n = 0;
        // FIXME can overflow (mask is only 3 bits)
        n |= NEEDS_CHANNEL_1 + t.channelCount - 1;
        if (t.doesResample()) {
            n |= NEEDS_RESAMPLE;
        }
        if (t.auxLevel != 0 && t.auxBuffer != NULL) {
            n |= NEEDS_AUX;
        }

        if (t.volumeInc[0]|t.volumeInc[1]) {
            volumeRamp = true;
        } else if (!t.doesResample() && t.volumeRL == 0) {
            n |= NEEDS_MUTE;
        }
        t.needs = n;

        if (n & NEEDS_MUTE) {
            t.hook = track__nop;
        } else {
            if (n & NEEDS_AUX) {
                all16BitsStereoNoResample = false;
            }
            if (n & NEEDS_RESAMPLE) {
                all16BitsStereoNoResample = false;
                resampling = true;
                t.hook = getTrackHook(TRACKTYPE_RESAMPLE, t.mMixerChannelCount,
                        t.mMixerInFormat, t.mMixerFormat);
                ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
                        "Track %d needs downmix + resample", i);
            } else {
                if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){
                    t.hook = getTrackHook(
                            (t.mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO  // TODO: MONO_HACK
                                    && t.channelMask == AUDIO_CHANNEL_OUT_MONO)
                                ? TRACKTYPE_NORESAMPLEMONO : TRACKTYPE_NORESAMPLE,
                            t.mMixerChannelCount,
                            t.mMixerInFormat, t.mMixerFormat);
                    all16BitsStereoNoResample = false;
                }
                if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){
                    t.hook = getTrackHook(TRACKTYPE_NORESAMPLE, t.mMixerChannelCount,
                            t.mMixerInFormat, t.mMixerFormat);
                    ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
                            "Track %d needs downmix", i);
                }
            }
        }
    }

    // select the processing hooks
    state->hook = process__nop;
    if (countActiveTracks > 0) {
        if (resampling) {
            if (!state->outputTemp) {
                state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
            }
            if (!state->resampleTemp) {
                state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
            }
            state->hook = process__genericResampling;
        } else {
            if (state->outputTemp) {
                delete [] state->outputTemp;
                state->outputTemp = NULL;
            }
            if (state->resampleTemp) {
                delete [] state->resampleTemp;
                state->resampleTemp = NULL;
            }
            state->hook = process__genericNoResampling;
            if (all16BitsStereoNoResample && !volumeRamp) {
                if (countActiveTracks == 1) {
                    const int i = 31 - __builtin_clz(state->enabledTracks);
                    track_t& t = state->tracks[i];
                    if ((t.needs & NEEDS_MUTE) == 0) {
                        // The check prevents a muted track from acquiring a process hook.
                        //
                        // This is dangerous if the track is MONO as that requires
                        // special case handling due to implicit channel duplication.
                        // Stereo or Multichannel should actually be fine here.
                        state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
                                t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
                    }
                }
            }
        }
    }

    ALOGV("mixer configuration change: %d activeTracks (%08x) "
        "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d",
        countActiveTracks, state->enabledTracks,
        all16BitsStereoNoResample, resampling, volumeRamp);

   state->hook(state, pts);

    // Now that the volume ramp has been done, set optimal state and
    // track hooks for subsequent mixer process
    if (countActiveTracks > 0) {
        bool allMuted = true;
        uint32_t en = state->enabledTracks;
        while (en) {
            const int i = 31 - __builtin_clz(en);
            en &= ~(1<<i);
            track_t& t = state->tracks[i];
            if (!t.doesResample() && t.volumeRL == 0) {
                t.needs |= NEEDS_MUTE;
                t.hook = track__nop;
            } else {
                allMuted = false;
            }
        }
        if (allMuted) {
            state->hook = process__nop;
        } else if (all16BitsStereoNoResample) {
            if (countActiveTracks == 1) {
                const int i = 31 - __builtin_clz(state->enabledTracks);
                track_t& t = state->tracks[i];
                // Muted single tracks handled by allMuted above.
                state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
                        t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
            }
        }
    }
}


void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount,
        int32_t* temp, int32_t* aux)
{
    ALOGVV("track__genericResample\n");
    t->resampler->setSampleRate(t->sampleRate);

    // ramp gain - resample to temp buffer and scale/mix in 2nd step
    if (aux != NULL) {
        // always resample with unity gain when sending to auxiliary buffer to be able
        // to apply send level after resampling
        t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
        memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(int32_t));
        t->resampler->resample(temp, outFrameCount, t->bufferProvider);
        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
            volumeRampStereo(t, out, outFrameCount, temp, aux);
        } else {
            volumeStereo(t, out, outFrameCount, temp, aux);
        }
    } else {
        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
            t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
            memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t));
            t->resampler->resample(temp, outFrameCount, t->bufferProvider);
            volumeRampStereo(t, out, outFrameCount, temp, aux);
        }

        // constant gain
        else {
            t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
            t->resampler->resample(out, outFrameCount, t->bufferProvider);
        }
    }
}

void AudioMixer::track__nop(track_t* t __unused, int32_t* out __unused,
        size_t outFrameCount __unused, int32_t* temp __unused, int32_t* aux __unused)
{
}

void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
        int32_t* aux)
{
    int32_t vl = t->prevVolume[0];
    int32_t vr = t->prevVolume[1];
    const int32_t vlInc = t->volumeInc[0];
    const int32_t vrInc = t->volumeInc[1];

    //ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
    //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
    //       (vl + vlInc*frameCount)/65536.0f, frameCount);

    // ramp volume
    if (CC_UNLIKELY(aux != NULL)) {
        int32_t va = t->prevAuxLevel;
        const int32_t vaInc = t->auxInc;
        int32_t l;
        int32_t r;

        do {
            l = (*temp++ >> 12);
            r = (*temp++ >> 12);
            *out++ += (vl >> 16) * l;
            *out++ += (vr >> 16) * r;
            *aux++ += (va >> 17) * (l + r);
            vl += vlInc;
            vr += vrInc;
            va += vaInc;
        } while (--frameCount);
        t->prevAuxLevel = va;
    } else {
        do {
            *out++ += (vl >> 16) * (*temp++ >> 12);
            *out++ += (vr >> 16) * (*temp++ >> 12);
            vl += vlInc;
            vr += vrInc;
        } while (--frameCount);
    }
    t->prevVolume[0] = vl;
    t->prevVolume[1] = vr;
    t->adjustVolumeRamp(aux != NULL);
}

void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
        int32_t* aux)
{
    const int16_t vl = t->volume[0];
    const int16_t vr = t->volume[1];

    if (CC_UNLIKELY(aux != NULL)) {
        const int16_t va = t->auxLevel;
        do {
            int16_t l = (int16_t)(*temp++ >> 12);
            int16_t r = (int16_t)(*temp++ >> 12);
            out[0] = mulAdd(l, vl, out[0]);
            int16_t a = (int16_t)(((int32_t)l + r) >> 1);
            out[1] = mulAdd(r, vr, out[1]);
            out += 2;
            aux[0] = mulAdd(a, va, aux[0]);
            aux++;
        } while (--frameCount);
    } else {
        do {
            int16_t l = (int16_t)(*temp++ >> 12);
            int16_t r = (int16_t)(*temp++ >> 12);
            out[0] = mulAdd(l, vl, out[0]);
            out[1] = mulAdd(r, vr, out[1]);
            out += 2;
        } while (--frameCount);
    }
}

void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount,
        int32_t* temp __unused, int32_t* aux)
{
    ALOGVV("track__16BitsStereo\n");
    const int16_t *in = static_cast<const int16_t *>(t->in);

    if (CC_UNLIKELY(aux != NULL)) {
        int32_t l;
        int32_t r;
        // ramp gain
        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
            int32_t vl = t->prevVolume[0];
            int32_t vr = t->prevVolume[1];
            int32_t va = t->prevAuxLevel;
            const int32_t vlInc = t->volumeInc[0];
            const int32_t vrInc = t->volumeInc[1];
            const int32_t vaInc = t->auxInc;
            // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
            //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
            //        (vl + vlInc*frameCount)/65536.0f, frameCount);

            do {
                l = (int32_t)*in++;
                r = (int32_t)*in++;
                *out++ += (vl >> 16) * l;
                *out++ += (vr >> 16) * r;
                *aux++ += (va >> 17) * (l + r);
                vl += vlInc;
                vr += vrInc;
                va += vaInc;
            } while (--frameCount);

            t->prevVolume[0] = vl;
            t->prevVolume[1] = vr;
            t->prevAuxLevel = va;
            t->adjustVolumeRamp(true);
        }

        // constant gain
        else {
            const uint32_t vrl = t->volumeRL;
            const int16_t va = (int16_t)t->auxLevel;
            do {
                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
                int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1);
                in += 2;
                out[0] = mulAddRL(1, rl, vrl, out[0]);
                out[1] = mulAddRL(0, rl, vrl, out[1]);
                out += 2;
                aux[0] = mulAdd(a, va, aux[0]);
                aux++;
            } while (--frameCount);
        }
    } else {
        // ramp gain
        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
            int32_t vl = t->prevVolume[0];
            int32_t vr = t->prevVolume[1];
            const int32_t vlInc = t->volumeInc[0];
            const int32_t vrInc = t->volumeInc[1];

            // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
            //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
            //        (vl + vlInc*frameCount)/65536.0f, frameCount);

            do {
                *out++ += (vl >> 16) * (int32_t) *in++;
                *out++ += (vr >> 16) * (int32_t) *in++;
                vl += vlInc;
                vr += vrInc;
            } while (--frameCount);

            t->prevVolume[0] = vl;
            t->prevVolume[1] = vr;
            t->adjustVolumeRamp(false);
        }

        // constant gain
        else {
            const uint32_t vrl = t->volumeRL;
            do {
                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
                in += 2;
                out[0] = mulAddRL(1, rl, vrl, out[0]);
                out[1] = mulAddRL(0, rl, vrl, out[1]);
                out += 2;
            } while (--frameCount);
        }
    }
    t->in = in;
}

void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount,
        int32_t* temp __unused, int32_t* aux)
{
    ALOGVV("track__16BitsMono\n");
    const int16_t *in = static_cast<int16_t const *>(t->in);

    if (CC_UNLIKELY(aux != NULL)) {
        // ramp gain
        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
            int32_t vl = t->prevVolume[0];
            int32_t vr = t->prevVolume[1];
            int32_t va = t->prevAuxLevel;
            const int32_t vlInc = t->volumeInc[0];
            const int32_t vrInc = t->volumeInc[1];
            const int32_t vaInc = t->auxInc;

            // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
            //         t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
            //         (vl + vlInc*frameCount)/65536.0f, frameCount);

            do {
                int32_t l = *in++;
                *out++ += (vl >> 16) * l;
                *out++ += (vr >> 16) * l;
                *aux++ += (va >> 16) * l;
                vl += vlInc;
                vr += vrInc;
                va += vaInc;
            } while (--frameCount);

            t->prevVolume[0] = vl;
            t->prevVolume[1] = vr;
            t->prevAuxLevel = va;
            t->adjustVolumeRamp(true);
        }
        // constant gain
        else {
            const int16_t vl = t->volume[0];
            const int16_t vr = t->volume[1];
            const int16_t va = (int16_t)t->auxLevel;
            do {
                int16_t l = *in++;
                out[0] = mulAdd(l, vl, out[0]);
                out[1] = mulAdd(l, vr, out[1]);
                out += 2;
                aux[0] = mulAdd(l, va, aux[0]);
                aux++;
            } while (--frameCount);
        }
    } else {
        // ramp gain
        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
            int32_t vl = t->prevVolume[0];
            int32_t vr = t->prevVolume[1];
            const int32_t vlInc = t->volumeInc[0];
            const int32_t vrInc = t->volumeInc[1];

            // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
            //         t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
            //         (vl + vlInc*frameCount)/65536.0f, frameCount);

            do {
                int32_t l = *in++;
                *out++ += (vl >> 16) * l;
                *out++ += (vr >> 16) * l;
                vl += vlInc;
                vr += vrInc;
            } while (--frameCount);

            t->prevVolume[0] = vl;
            t->prevVolume[1] = vr;
            t->adjustVolumeRamp(false);
        }
        // constant gain
        else {
            const int16_t vl = t->volume[0];
            const int16_t vr = t->volume[1];
            do {
                int16_t l = *in++;
                out[0] = mulAdd(l, vl, out[0]);
                out[1] = mulAdd(l, vr, out[1]);
                out += 2;
            } while (--frameCount);
        }
    }
    t->in = in;
}

// no-op case
void AudioMixer::process__nop(state_t* state, int64_t pts)
{
    ALOGVV("process__nop\n");
    uint32_t e0 = state->enabledTracks;
    while (e0) {
        // process by group of tracks with same output buffer to
        // avoid multiple memset() on same buffer
        uint32_t e1 = e0, e2 = e0;
        int i = 31 - __builtin_clz(e1);
        {
            track_t& t1 = state->tracks[i];
            e2 &= ~(1<<i);
            while (e2) {
                i = 31 - __builtin_clz(e2);
                e2 &= ~(1<<i);
                track_t& t2 = state->tracks[i];
                if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
                    e1 &= ~(1<<i);
                }
            }
            e0 &= ~(e1);

            memset(t1.mainBuffer, 0, state->frameCount * t1.mMixerChannelCount
                    * audio_bytes_per_sample(t1.mMixerFormat));
        }

        while (e1) {
            i = 31 - __builtin_clz(e1);
            e1 &= ~(1<<i);
            {
                track_t& t3 = state->tracks[i];
                size_t outFrames = state->frameCount;
                while (outFrames) {
                    t3.buffer.frameCount = outFrames;
                    int64_t outputPTS = calculateOutputPTS(
                        t3, pts, state->frameCount - outFrames);
                    t3.bufferProvider->getNextBuffer(&t3.buffer, outputPTS);
                    if (t3.buffer.raw == NULL) break;
                    outFrames -= t3.buffer.frameCount;
                    t3.bufferProvider->releaseBuffer(&t3.buffer);
                }
            }
        }
    }
}

// generic code without resampling
void AudioMixer::process__genericNoResampling(state_t* state, int64_t pts)
{
    ALOGVV("process__genericNoResampling\n");
    int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32)));

    // acquire each track's buffer
    uint32_t enabledTracks = state->enabledTracks;
    uint32_t e0 = enabledTracks;
    while (e0) {
        const int i = 31 - __builtin_clz(e0);
        e0 &= ~(1<<i);
        track_t& t = state->tracks[i];
        t.buffer.frameCount = state->frameCount;
        t.bufferProvider->getNextBuffer(&t.buffer, pts);
        t.frameCount = t.buffer.frameCount;
        t.in = t.buffer.raw;
    }

    e0 = enabledTracks;
    while (e0) {
        // process by group of tracks with same output buffer to
        // optimize cache use
        uint32_t e1 = e0, e2 = e0;
        int j = 31 - __builtin_clz(e1);
        track_t& t1 = state->tracks[j];
        e2 &= ~(1<<j);
        while (e2) {
            j = 31 - __builtin_clz(e2);
            e2 &= ~(1<<j);
            track_t& t2 = state->tracks[j];
            if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
                e1 &= ~(1<<j);
            }
        }
        e0 &= ~(e1);
        // this assumes output 16 bits stereo, no resampling
        int32_t *out = t1.mainBuffer;
        size_t numFrames = 0;
        do {
            memset(outTemp, 0, sizeof(outTemp));
            e2 = e1;
            while (e2) {
                const int i = 31 - __builtin_clz(e2);
                e2 &= ~(1<<i);
                track_t& t = state->tracks[i];
                size_t outFrames = BLOCKSIZE;
                int32_t *aux = NULL;
                if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
                    aux = t.auxBuffer + numFrames;
                }
                while (outFrames) {
                    // t.in == NULL can happen if the track was flushed just after having
                    // been enabled for mixing.
                   if (t.in == NULL) {
                        enabledTracks &= ~(1<<i);
                        e1 &= ~(1<<i);
                        break;
                    }
                    size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount;
                    if (inFrames > 0) {
                        t.hook(&t, outTemp + (BLOCKSIZE - outFrames) * t.mMixerChannelCount,
                                inFrames, state->resampleTemp, aux);
                        t.frameCount -= inFrames;
                        outFrames -= inFrames;
                        if (CC_UNLIKELY(aux != NULL)) {
                            aux += inFrames;
                        }
                    }
                    if (t.frameCount == 0 && outFrames) {
                        t.bufferProvider->releaseBuffer(&t.buffer);
                        t.buffer.frameCount = (state->frameCount - numFrames) -
                                (BLOCKSIZE - outFrames);
                        int64_t outputPTS = calculateOutputPTS(
                            t, pts, numFrames + (BLOCKSIZE - outFrames));
                        t.bufferProvider->getNextBuffer(&t.buffer, outputPTS);
                        t.in = t.buffer.raw;
                        if (t.in == NULL) {
                            enabledTracks &= ~(1<<i);
                            e1 &= ~(1<<i);
                            break;
                        }
                        t.frameCount = t.buffer.frameCount;
                    }
                }
            }

            convertMixerFormat(out, t1.mMixerFormat, outTemp, t1.mMixerInFormat,
                    BLOCKSIZE * t1.mMixerChannelCount);
            // TODO: fix ugly casting due to choice of out pointer type
            out = reinterpret_cast<int32_t*>((uint8_t*)out
                    + BLOCKSIZE * t1.mMixerChannelCount
                        * audio_bytes_per_sample(t1.mMixerFormat));
            numFrames += BLOCKSIZE;
        } while (numFrames < state->frameCount);
    }

    // release each track's buffer
    e0 = enabledTracks;
    while (e0) {
        const int i = 31 - __builtin_clz(e0);
        e0 &= ~(1<<i);
        track_t& t = state->tracks[i];
        t.bufferProvider->releaseBuffer(&t.buffer);
    }
}


// generic code with resampling
void AudioMixer::process__genericResampling(state_t* state, int64_t pts)
{
    ALOGVV("process__genericResampling\n");
    // this const just means that local variable outTemp doesn't change
    int32_t* const outTemp = state->outputTemp;
    size_t numFrames = state->frameCount;

    uint32_t e0 = state->enabledTracks;
    while (e0) {
        // process by group of tracks with same output buffer
        // to optimize cache use
        uint32_t e1 = e0, e2 = e0;
        int j = 31 - __builtin_clz(e1);
        track_t& t1 = state->tracks[j];
        e2 &= ~(1<<j);
        while (e2) {
            j = 31 - __builtin_clz(e2);
            e2 &= ~(1<<j);
            track_t& t2 = state->tracks[j];
            if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
                e1 &= ~(1<<j);
            }
        }
        e0 &= ~(e1);
        int32_t *out = t1.mainBuffer;
        memset(outTemp, 0, sizeof(*outTemp) * t1.mMixerChannelCount * state->frameCount);
        while (e1) {
            const int i = 31 - __builtin_clz(e1);
            e1 &= ~(1<<i);
            track_t& t = state->tracks[i];
            int32_t *aux = NULL;
            if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
                aux = t.auxBuffer;
            }

            // this is a little goofy, on the resampling case we don't
            // acquire/release the buffers because it's done by
            // the resampler.
            if (t.needs & NEEDS_RESAMPLE) {
                t.resampler->setPTS(pts);
                t.hook(&t, outTemp, numFrames, state->resampleTemp, aux);
            } else {

                size_t outFrames = 0;

                while (outFrames < numFrames) {
                    t.buffer.frameCount = numFrames - outFrames;
                    int64_t outputPTS = calculateOutputPTS(t, pts, outFrames);
                    t.bufferProvider->getNextBuffer(&t.buffer, outputPTS);
                    t.in = t.buffer.raw;
                    // t.in == NULL can happen if the track was flushed just after having
                    // been enabled for mixing.
                    if (t.in == NULL) break;

                    if (CC_UNLIKELY(aux != NULL)) {
                        aux += outFrames;
                    }
                    t.hook(&t, outTemp + outFrames * t.mMixerChannelCount, t.buffer.frameCount,
                            state->resampleTemp, aux);
                    outFrames += t.buffer.frameCount;
                    t.bufferProvider->releaseBuffer(&t.buffer);
                }
            }
        }
        convertMixerFormat(out, t1.mMixerFormat,
                outTemp, t1.mMixerInFormat, numFrames * t1.mMixerChannelCount);
    }
}

// one track, 16 bits stereo without resampling is the most common case
void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state,
                                                           int64_t pts)
{
    ALOGVV("process__OneTrack16BitsStereoNoResampling\n");
    // This method is only called when state->enabledTracks has exactly
    // one bit set.  The asserts below would verify this, but are commented out
    // since the whole point of this method is to optimize performance.
    //ALOG_ASSERT(0 != state->enabledTracks, "no tracks enabled");
    const int i = 31 - __builtin_clz(state->enabledTracks);
    //ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
    const track_t& t = state->tracks[i];

    AudioBufferProvider::Buffer& b(t.buffer);

    int32_t* out = t.mainBuffer;
    float *fout = reinterpret_cast<float*>(out);
    size_t numFrames = state->frameCount;

    const int16_t vl = t.volume[0];
    const int16_t vr = t.volume[1];
    const uint32_t vrl = t.volumeRL;
    while (numFrames) {
        b.frameCount = numFrames;
        int64_t outputPTS = calculateOutputPTS(t, pts, out - t.mainBuffer);
        t.bufferProvider->getNextBuffer(&b, outputPTS);
        const int16_t *in = b.i16;

        // in == NULL can happen if the track was flushed just after having
        // been enabled for mixing.
        if (in == NULL || (((uintptr_t)in) & 3)) {
            memset(out, 0, numFrames
                    * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat));
            ALOGE_IF((((uintptr_t)in) & 3),
                    "process__OneTrack16BitsStereoNoResampling: misaligned buffer"
                    " %p track %d, channels %d, needs %08x, volume %08x vfl %f vfr %f",
                    in, i, t.channelCount, t.needs, vrl, t.mVolume[0], t.mVolume[1]);
            return;
        }
        size_t outFrames = b.frameCount;

        switch (t.mMixerFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            do {
                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
                in += 2;
                int32_t l = mulRL(1, rl, vrl);
                int32_t r = mulRL(0, rl, vrl);
                *fout++ = float_from_q4_27(l);
                *fout++ = float_from_q4_27(r);
                // Note: In case of later int16_t sink output,
                // conversion and clamping is done by memcpy_to_i16_from_float().
            } while (--outFrames);
            break;
        case AUDIO_FORMAT_PCM_16_BIT:
            if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN_INT || uint32_t(vr) > UNITY_GAIN_INT)) {
                // volume is boosted, so we might need to clamp even though
                // we process only one track.
                do {
                    uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
                    in += 2;
                    int32_t l = mulRL(1, rl, vrl) >> 12;
                    int32_t r = mulRL(0, rl, vrl) >> 12;
                    // clamping...
                    l = clamp16(l);
                    r = clamp16(r);
                    *out++ = (r<<16) | (l & 0xFFFF);
                } while (--outFrames);
            } else {
                do {
                    uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
                    in += 2;
                    int32_t l = mulRL(1, rl, vrl) >> 12;
                    int32_t r = mulRL(0, rl, vrl) >> 12;
                    *out++ = (r<<16) | (l & 0xFFFF);
                } while (--outFrames);
            }
            break;
        default:
            LOG_ALWAYS_FATAL("bad mixer format: %d", t.mMixerFormat);
        }
        numFrames -= b.frameCount;
        t.bufferProvider->releaseBuffer(&b);
    }
}

int64_t AudioMixer::calculateOutputPTS(const track_t& t, int64_t basePTS,
                                       int outputFrameIndex)
{
    if (AudioBufferProvider::kInvalidPTS == basePTS) {
        return AudioBufferProvider::kInvalidPTS;
    }

    return basePTS + ((outputFrameIndex * sLocalTimeFreq) / t.sampleRate);
}

/*static*/ uint64_t AudioMixer::sLocalTimeFreq;
/*static*/ pthread_once_t AudioMixer::sOnceControl = PTHREAD_ONCE_INIT;

/*static*/ void AudioMixer::sInitRoutine()
{
//cjh    LocalClock lc;
//    sLocalTimeFreq = lc.getLocalFreq(); // for the resampler
//
//    DownmixerBufferProvider::init(); // for the downmixer
}

/* TODO: consider whether this level of optimization is necessary.
 * Perhaps just stick with a single for loop.
 */

// Needs to derive a compile time constant (constexpr).  Could be targeted to go
// to a MONOVOL mixtype based on MAX_NUM_VOLUMES, but that's an unnecessary complication.
#define MIXTYPE_MONOVOL(mixtype) (mixtype == MIXTYPE_MULTI ? MIXTYPE_MULTI_MONOVOL : \
        mixtype == MIXTYPE_MULTI_SAVEONLY ? MIXTYPE_MULTI_SAVEONLY_MONOVOL : mixtype)

/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
 * TO: int32_t (Q4.27) or float
 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
 * TA: int32_t (Q4.27)
 */
template <int MIXTYPE,
        typename TO, typename TI, typename TV, typename TA, typename TAV>
static void volumeRampMulti(uint32_t channels, TO* out, size_t frameCount,
        const TI* in, TA* aux, TV *vol, const TV *volinc, TAV *vola, TAV volainc)
{
    switch (channels) {
    case 1:
        volumeRampMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 2:
        volumeRampMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 3:
        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out,
                frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 4:
        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out,
                frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 5:
        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out,
                frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 6:
        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out,
                frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 7:
        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out,
                frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    case 8:
        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out,
                frameCount, in, aux, vol, volinc, vola, volainc);
        break;
    }
}

/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
 * TO: int32_t (Q4.27) or float
 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
 * TA: int32_t (Q4.27)
 */
template <int MIXTYPE,
        typename TO, typename TI, typename TV, typename TA, typename TAV>
static void volumeMulti(uint32_t channels, TO* out, size_t frameCount,
        const TI* in, TA* aux, const TV *vol, TAV vola)
{
    switch (channels) {
    case 1:
        volumeMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, vola);
        break;
    case 2:
        volumeMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, vola);
        break;
    case 3:
        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out, frameCount, in, aux, vol, vola);
        break;
    case 4:
        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out, frameCount, in, aux, vol, vola);
        break;
    case 5:
        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out, frameCount, in, aux, vol, vola);
        break;
    case 6:
        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out, frameCount, in, aux, vol, vola);
        break;
    case 7:
        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out, frameCount, in, aux, vol, vola);
        break;
    case 8:
        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out, frameCount, in, aux, vol, vola);
        break;
    }
}

/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
 * USEFLOATVOL (set to true if float volume is used)
 * ADJUSTVOL   (set to true if volume ramp parameters needs adjustment afterwards)
 * TO: int32_t (Q4.27) or float
 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
 * TA: int32_t (Q4.27)
 */
template <int MIXTYPE, bool USEFLOATVOL, bool ADJUSTVOL,
    typename TO, typename TI, typename TA>
void AudioMixer::volumeMix(TO *out, size_t outFrames,
        const TI *in, TA *aux, bool ramp, AudioMixer::track_t *t)
{
    if (USEFLOATVOL) {
        if (ramp) {
            volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
                    t->mPrevVolume, t->mVolumeInc, &t->prevAuxLevel, t->auxInc);
            if (ADJUSTVOL) {
                t->adjustVolumeRamp(aux != NULL, true);
            }
        } else {
            volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
                    t->mVolume, t->auxLevel);
        }
    } else {
        if (ramp) {
            volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
                    t->prevVolume, t->volumeInc, &t->prevAuxLevel, t->auxInc);
            if (ADJUSTVOL) {
                t->adjustVolumeRamp(aux != NULL);
            }
        } else {
            volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
                    t->volume, t->auxLevel);
        }
    }
}

/* This process hook is called when there is a single track without
 * aux buffer, volume ramp, or resampling.
 * TODO: Update the hook selection: this can properly handle aux and ramp.
 *
 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
 * TO: int32_t (Q4.27) or float
 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
 * TA: int32_t (Q4.27)
 */
template <int MIXTYPE, typename TO, typename TI, typename TA>
void AudioMixer::process_NoResampleOneTrack(state_t* state, int64_t pts)
{
    ALOGVV("process_NoResampleOneTrack\n");
    // CLZ is faster than CTZ on ARM, though really not sure if true after 31 - clz.
    const int i = 31 - __builtin_clz(state->enabledTracks);
    ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
    track_t *t = &state->tracks[i];
    const uint32_t channels = t->mMixerChannelCount;
    TO* out = reinterpret_cast<TO*>(t->mainBuffer);
    TA* aux = reinterpret_cast<TA*>(t->auxBuffer);
    const bool ramp = t->needsRamp();

    for (size_t numFrames = state->frameCount; numFrames; ) {
        AudioBufferProvider::Buffer& b(t->buffer);
        // get input buffer
        b.frameCount = numFrames;
        const int64_t outputPTS = calculateOutputPTS(*t, pts, state->frameCount - numFrames);
        t->bufferProvider->getNextBuffer(&b, outputPTS);
        const TI *in = reinterpret_cast<TI*>(b.raw);

        // in == NULL can happen if the track was flushed just after having
        // been enabled for mixing.
        if (in == NULL || (((uintptr_t)in) & 3)) {
            memset(out, 0, numFrames
                    * channels * audio_bytes_per_sample(t->mMixerFormat));
            ALOGE_IF((((uintptr_t)in) & 3), "process_NoResampleOneTrack: bus error: "
                    "buffer %p track %p, channels %d, needs %#x",
                    in, t, t->channelCount, t->needs);
            return;
        }

        const size_t outFrames = b.frameCount;
        volumeMix<MIXTYPE, is_same<TI, float>::value, false> (
                out, outFrames, in, aux, ramp, t);

        out += outFrames * channels;
        if (aux != NULL) {
            aux += channels;
        }
        numFrames -= b.frameCount;

        // release buffer
        t->bufferProvider->releaseBuffer(&b);
    }
    if (ramp) {
        t->adjustVolumeRamp(aux != NULL, is_same<TI, float>::value);
    }
}

/* This track hook is called to do resampling then mixing,
 * pulling from the track's upstream AudioBufferProvider.
 *
 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
 * TO: int32_t (Q4.27) or float
 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
 * TA: int32_t (Q4.27)
 */
template <int MIXTYPE, typename TO, typename TI, typename TA>
void AudioMixer::track__Resample(track_t* t, TO* out, size_t outFrameCount, TO* temp, TA* aux)
{
    ALOGVV("track__Resample\n");
    t->resampler->setSampleRate(t->sampleRate);
    const bool ramp = t->needsRamp();
    if (ramp || aux != NULL) {
        // if ramp:        resample with unity gain to temp buffer and scale/mix in 2nd step.
        // if aux != NULL: resample with unity gain to temp buffer then apply send level.

        t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
        memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(TO));
        t->resampler->resample((int32_t*)temp, outFrameCount, t->bufferProvider);

        volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
                out, outFrameCount, temp, aux, ramp, t);

    } else { // constant volume gain
        t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
        t->resampler->resample((int32_t*)out, outFrameCount, t->bufferProvider);
    }
}

/* This track hook is called to mix a track, when no resampling is required.
 * The input buffer should be present in t->in.
 *
 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
 * TO: int32_t (Q4.27) or float
 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
 * TA: int32_t (Q4.27)
 */
template <int MIXTYPE, typename TO, typename TI, typename TA>
void AudioMixer::track__NoResample(track_t* t, TO* out, size_t frameCount,
        TO* temp __unused, TA* aux)
{
    ALOGVV("track__NoResample\n");
    const TI *in = static_cast<const TI *>(t->in);

    volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
            out, frameCount, in, aux, t->needsRamp(), t);

    // MIXTYPE_MONOEXPAND reads a single input channel and expands to NCHAN output channels.
    // MIXTYPE_MULTI reads NCHAN input channels and places to NCHAN output channels.
    in += (MIXTYPE == MIXTYPE_MONOEXPAND) ? frameCount : frameCount * t->mMixerChannelCount;
    t->in = in;
}

/* The Mixer engine generates either int32_t (Q4_27) or float data.
 * We use this function to convert the engine buffers
 * to the desired mixer output format, either int16_t (Q.15) or float.
 */
void AudioMixer::convertMixerFormat(void *out, audio_format_t mixerOutFormat,
        void *in, audio_format_t mixerInFormat, size_t sampleCount)
{
    switch (mixerInFormat) {
    case AUDIO_FORMAT_PCM_FLOAT:
        switch (mixerOutFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            memcpy(out, in, sampleCount * sizeof(float)); // MEMCPY. TODO optimize out
            break;
        case AUDIO_FORMAT_PCM_16_BIT:
            memcpy_to_i16_from_float((int16_t*)out, (float*)in, sampleCount);
            break;
        default:
            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
            break;
        }
        break;
    case AUDIO_FORMAT_PCM_16_BIT:
        switch (mixerOutFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            memcpy_to_float_from_q4_27((float*)out, (int32_t*)in, sampleCount);
            break;
        case AUDIO_FORMAT_PCM_16_BIT:
            // two int16_t are produced per iteration
            ditherAndClamp((int32_t*)out, (int32_t*)in, sampleCount >> 1);
            break;
        default:
            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
            break;
        }
        break;
    default:
        LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
        break;
    }
}

/* Returns the proper track hook to use for mixing the track into the output buffer.
 */
AudioMixer::hook_t AudioMixer::getTrackHook(int trackType, uint32_t channelCount,
        audio_format_t mixerInFormat, audio_format_t mixerOutFormat __unused)
{
    if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
        switch (trackType) {
        case TRACKTYPE_NOP:
            return track__nop;
        case TRACKTYPE_RESAMPLE:
            return track__genericResample;
        case TRACKTYPE_NORESAMPLEMONO:
            return track__16BitsMono;
        case TRACKTYPE_NORESAMPLE:
            return track__16BitsStereo;
        default:
            LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
            break;
        }
    }
    LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
    switch (trackType) {
    case TRACKTYPE_NOP:
        return track__nop;
    case TRACKTYPE_RESAMPLE:
        switch (mixerInFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            return (AudioMixer::hook_t)
                    track__Resample<MIXTYPE_MULTI, float /*TO*/, float /*TI*/, int32_t /*TA*/>;
        case AUDIO_FORMAT_PCM_16_BIT:
            return (AudioMixer::hook_t)\
                    track__Resample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
        default:
            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
            break;
        }
        break;
    case TRACKTYPE_NORESAMPLEMONO:
        switch (mixerInFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            return (AudioMixer::hook_t)
                    track__NoResample<MIXTYPE_MONOEXPAND, float, float, int32_t>;
        case AUDIO_FORMAT_PCM_16_BIT:
            return (AudioMixer::hook_t)
                    track__NoResample<MIXTYPE_MONOEXPAND, int32_t, int16_t, int32_t>;
        default:
            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
            break;
        }
        break;
    case TRACKTYPE_NORESAMPLE:
        switch (mixerInFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            return (AudioMixer::hook_t)
                    track__NoResample<MIXTYPE_MULTI, float, float, int32_t>;
        case AUDIO_FORMAT_PCM_16_BIT:
            return (AudioMixer::hook_t)
                    track__NoResample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
        default:
            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
            break;
        }
        break;
    default:
        LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
        break;
    }
    return NULL;
}

/* Returns the proper process hook for mixing tracks. Currently works only for
 * PROCESSTYPE_NORESAMPLEONETRACK, a mix involving one track, no resampling.
 *
 * TODO: Due to the special mixing considerations of duplicating to
 * a stereo output track, the input track cannot be MONO.  This should be
 * prevented by the caller.
 */
AudioMixer::process_hook_t AudioMixer::getProcessHook(int processType, uint32_t channelCount,
        audio_format_t mixerInFormat, audio_format_t mixerOutFormat)
{
    if (processType != PROCESSTYPE_NORESAMPLEONETRACK) { // Only NORESAMPLEONETRACK
        LOG_ALWAYS_FATAL("bad processType: %d", processType);
        return NULL;
    }
    if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
        return process__OneTrack16BitsStereoNoResampling;
    }
    LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
    switch (mixerInFormat) {
    case AUDIO_FORMAT_PCM_FLOAT:
        switch (mixerOutFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
                    float /*TO*/, float /*TI*/, int32_t /*TA*/>;
        case AUDIO_FORMAT_PCM_16_BIT:
            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
                    int16_t, float, int32_t>;
        default:
            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
            break;
        }
        break;
    case AUDIO_FORMAT_PCM_16_BIT:
        switch (mixerOutFormat) {
        case AUDIO_FORMAT_PCM_FLOAT:
            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
                    float, int16_t, int32_t>;
        case AUDIO_FORMAT_PCM_16_BIT:
            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
                    int16_t, int16_t, int32_t>;
        default:
            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
            break;
        }
        break;
    default:
        LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
        break;
    }
    return NULL;
}

// ----------------------------------------------------------------------------
} // namespace cocos2d {