flatbuffers.h
34.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_H_
#define FLATBUFFERS_H_
#include <assert.h>
#include <cstdint>
#include <cstddef>
#include <cstring>
#include <string>
#include <type_traits>
#include <vector>
#include <algorithm>
#if __cplusplus <= 199711L && \
(!defined(_MSC_VER) || _MSC_VER < 1600) && \
(!defined(__GNUC__) || \
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ < 40603))
#error A C++11 compatible compiler is required for FlatBuffers.
#error __cplusplus _MSC_VER __GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__
#endif
// The wire format uses a little endian encoding (since that's efficient for
// the common platforms).
#if !defined(FLATBUFFERS_LITTLEENDIAN)
#if defined(__GNUC__) || defined(__clang__)
#ifdef __BIG_ENDIAN__
#define FLATBUFFERS_LITTLEENDIAN 0
#else
#define FLATBUFFERS_LITTLEENDIAN 1
#endif // __BIG_ENDIAN__
#elif defined(_MSC_VER)
#if defined(_M_PPC)
#define FLATBUFFERS_LITTLEENDIAN 0
#else
#define FLATBUFFERS_LITTLEENDIAN 1
#endif
#else
#error Unable to determine endianness, define FLATBUFFERS_LITTLEENDIAN.
#endif
#endif // !defined(FLATBUFFERS_LITTLEENDIAN)
#define FLATBUFFERS_VERSION_MAJOR 1
#define FLATBUFFERS_VERSION_MINOR 0
#define FLATBUFFERS_VERSION_REVISION 0
#define FLATBUFFERS_STRING_EXPAND(X) #X
#define FLATBUFFERS_STRING(X) FLATBUFFERS_STRING_EXPAND(X)
namespace flatbuffers {
// Our default offset / size type, 32bit on purpose on 64bit systems.
// Also, using a consistent offset type maintains compatibility of serialized
// offset values between 32bit and 64bit systems.
typedef uint32_t uoffset_t;
// Signed offsets for references that can go in both directions.
typedef int32_t soffset_t;
// Offset/index used in v-tables, can be changed to uint8_t in
// format forks to save a bit of space if desired.
typedef uint16_t voffset_t;
typedef uintmax_t largest_scalar_t;
// Wrapper for uoffset_t to allow safe template specialization.
template<typename T> struct Offset {
uoffset_t o;
Offset() : o(0) {}
Offset(uoffset_t _o) : o(_o) {}
Offset<void> Union() const { return Offset<void>(o); }
};
inline void EndianCheck() {
int endiantest = 1;
// If this fails, see FLATBUFFERS_LITTLEENDIAN above.
assert(*reinterpret_cast<char *>(&endiantest) == FLATBUFFERS_LITTLEENDIAN);
(void)endiantest;
}
template<typename T> T EndianScalar(T t) {
#if FLATBUFFERS_LITTLEENDIAN
return t;
#else
#if defined(_MSC_VER)
#pragma push_macro("__builtin_bswap16")
#pragma push_macro("__builtin_bswap32")
#pragma push_macro("__builtin_bswap64")
#define __builtin_bswap16 _byteswap_ushort
#define __builtin_bswap32 _byteswap_ulong
#define __builtin_bswap64 _byteswap_uint64
#endif
// If you're on the few remaining big endian platforms, we make the bold
// assumption you're also on gcc/clang, and thus have bswap intrinsics:
if (sizeof(T) == 1) { // Compile-time if-then's.
return t;
} else if (sizeof(T) == 2) {
auto r = __builtin_bswap16(*reinterpret_cast<uint16_t *>(&t));
return *reinterpret_cast<T *>(&r);
} else if (sizeof(T) == 4) {
auto r = __builtin_bswap32(*reinterpret_cast<uint32_t *>(&t));
return *reinterpret_cast<T *>(&r);
} else if (sizeof(T) == 8) {
auto r = __builtin_bswap64(*reinterpret_cast<uint64_t *>(&t));
return *reinterpret_cast<T *>(&r);
} else {
assert(0);
}
#if defined(_MSC_VER)
#pragma pop_macro("__builtin_bswap16")
#pragma pop_macro("__builtin_bswap32")
#pragma pop_macro("__builtin_bswap64")
#endif
#endif
}
template<typename T> T ReadScalar(const void *p) {
return EndianScalar(*reinterpret_cast<const T *>(p));
}
template<typename T> void WriteScalar(void *p, T t) {
*reinterpret_cast<T *>(p) = EndianScalar(t);
}
template<typename T> size_t AlignOf() {
#ifdef _MSC_VER
return __alignof(T);
#else
return alignof(T);
#endif
}
// When we read serialized data from memory, in the case of most scalars,
// we want to just read T, but in the case of Offset, we want to actually
// perform the indirection and return a pointer.
// The template specialization below does just that.
// It is wrapped in a struct since function templates can't overload on the
// return type like this.
// The typedef is for the convenience of callers of this function
// (avoiding the need for a trailing return decltype)
template<typename T> struct IndirectHelper {
typedef T return_type;
static const size_t element_stride = sizeof(T);
static return_type Read(const uint8_t *p, uoffset_t i) {
return EndianScalar((reinterpret_cast<const T *>(p))[i]);
}
};
template<typename T> struct IndirectHelper<Offset<T>> {
typedef const T *return_type;
static const size_t element_stride = sizeof(uoffset_t);
static return_type Read(const uint8_t *p, uoffset_t i) {
p += i * sizeof(uoffset_t);
return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p));
}
};
template<typename T> struct IndirectHelper<const T *> {
typedef const T *return_type;
static const size_t element_stride = sizeof(T);
static return_type Read(const uint8_t *p, uoffset_t i) {
return reinterpret_cast<const T *>(p + i * sizeof(T));
}
};
// An STL compatible iterator implementation for Vector below, effectively
// calling Get() for every element.
template<typename T, bool bConst>
struct VectorIterator : public
std::iterator < std::input_iterator_tag,
typename std::conditional < bConst,
const typename IndirectHelper<T>::return_type,
typename IndirectHelper<T>::return_type > ::type, uoffset_t > {
typedef std::iterator<std::input_iterator_tag,
typename std::conditional<bConst,
const typename IndirectHelper<T>::return_type,
typename IndirectHelper<T>::return_type>::type, uoffset_t> super_type;
public:
VectorIterator(const uint8_t *data, uoffset_t i) :
data_(data + IndirectHelper<T>::element_stride * i) {};
VectorIterator(const VectorIterator &other) : data_(other.data_) {}
VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {}
VectorIterator &operator=(const VectorIterator &other) {
data_ = other.data_;
return *this;
}
VectorIterator &operator=(VectorIterator &&other) {
data_ = other.data_;
return *this;
}
bool operator==(const VectorIterator& other) const {
return data_ == other.data_;
}
bool operator!=(const VectorIterator& other) const {
return data_ != other.data_;
}
ptrdiff_t operator-(const VectorIterator& other) const {
return (data_ - other.data_) / IndirectHelper<T>::element_stride;
}
typename super_type::value_type operator *() const {
return IndirectHelper<T>::Read(data_, 0);
}
typename super_type::value_type operator->() const {
return IndirectHelper<T>::Read(data_, 0);
}
VectorIterator &operator++() {
data_ += IndirectHelper<T>::element_stride;
return *this;
}
VectorIterator operator++(int) {
VectorIterator temp(data_);
data_ += IndirectHelper<T>::element_stride;
return temp;
}
private:
const uint8_t *data_;
};
// This is used as a helper type for accessing vectors.
// Vector::data() assumes the vector elements start after the length field.
template<typename T> class Vector {
public:
typedef VectorIterator<T, false> iterator;
typedef VectorIterator<T, true> const_iterator;
uoffset_t size() const { return EndianScalar(length_); }
// Deprecated: use size(). Here for backwards compatibility.
uoffset_t Length() const { return size(); }
typedef typename IndirectHelper<T>::return_type return_type;
return_type Get(uoffset_t i) const {
assert(i < size());
return IndirectHelper<T>::Read(Data(), i);
}
// If this is a Vector of enums, T will be its storage type, not the enum
// type. This function makes it convenient to retrieve value with enum
// type E.
template<typename E> E GetEnum(uoffset_t i) const {
return static_cast<E>(Get(i));
}
const void *GetStructFromOffset(size_t o) const {
return reinterpret_cast<const void *>(Data() + o);
}
iterator begin() { return iterator(Data(), 0); }
const_iterator begin() const { return const_iterator(Data(), 0); }
iterator end() { return iterator(Data(), length_); }
const_iterator end() const { return const_iterator(Data(), length_); }
// The raw data in little endian format. Use with care.
const uint8_t *Data() const {
return reinterpret_cast<const uint8_t *>(&length_ + 1);
}
protected:
// This class is only used to access pre-existing data. Don't ever
// try to construct these manually.
Vector();
uoffset_t length_;
};
struct String : public Vector<char> {
const char *c_str() const { return reinterpret_cast<const char *>(Data()); }
};
// Simple indirection for buffer allocation, to allow this to be overridden
// with custom allocation (see the FlatBufferBuilder constructor).
class simple_allocator {
public:
virtual ~simple_allocator(){}
virtual uint8_t *allocate(size_t size) const { return new uint8_t[size]; }
virtual void deallocate(uint8_t *p) const { delete[] p; }
};
// This is a minimal replication of std::vector<uint8_t> functionality,
// except growing from higher to lower addresses. i.e push_back() inserts data
// in the lowest address in the vector.
class vector_downward {
public:
explicit vector_downward(size_t initial_size,
const simple_allocator &allocator)
: reserved_(initial_size),
buf_(allocator.allocate(reserved_)),
cur_(buf_ + reserved_),
allocator_(allocator) {
assert((initial_size & (sizeof(largest_scalar_t) - 1)) == 0);
}
~vector_downward() { allocator_.deallocate(buf_); }
void clear() { cur_ = buf_ + reserved_; }
size_t growth_policy(size_t bytes) {
return (bytes / 2) & ~(sizeof(largest_scalar_t) - 1);
}
uint8_t *make_space(size_t len) {
if (buf_ > cur_ - len) {
auto old_size = size();
reserved_ += std::max(len, growth_policy(reserved_));
auto new_buf = allocator_.allocate(reserved_);
auto new_cur = new_buf + reserved_ - old_size;
memcpy(new_cur, cur_, old_size);
cur_ = new_cur;
allocator_.deallocate(buf_);
buf_ = new_buf;
}
cur_ -= len;
// Beyond this, signed offsets may not have enough range:
// (FlatBuffers > 2GB not supported).
assert(size() < (1UL << (sizeof(soffset_t) * 8 - 1)) - 1);
return cur_;
}
uoffset_t size() const {
return static_cast<uoffset_t>(reserved_ - (cur_ - buf_));
}
uint8_t *data() const { return cur_; }
uint8_t *data_at(size_t offset) { return buf_ + reserved_ - offset; }
// push() & fill() are most frequently called with small byte counts (<= 4),
// which is why we're using loops rather than calling memcpy/memset.
void push(const uint8_t *bytes, size_t num) {
auto dest = make_space(num);
for (size_t i = 0; i < num; i++) dest[i] = bytes[i];
}
void fill(size_t zero_pad_bytes) {
auto dest = make_space(zero_pad_bytes);
for (size_t i = 0; i < zero_pad_bytes; i++) dest[i] = 0;
}
void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; }
private:
// You shouldn't really be copying instances of this class.
vector_downward(const vector_downward &);
vector_downward &operator=(const vector_downward &);
size_t reserved_;
uint8_t *buf_;
uint8_t *cur_; // Points at location between empty (below) and used (above).
const simple_allocator &allocator_;
};
// Converts a Field ID to a virtual table offset.
inline voffset_t FieldIndexToOffset(voffset_t field_id) {
// Should correspond to what EndTable() below builds up.
const int fixed_fields = 2; // Vtable size and Object Size.
return (field_id + fixed_fields) * sizeof(voffset_t);
}
// Computes how many bytes you'd have to pad to be able to write an
// "scalar_size" scalar if the buffer had grown to "buf_size" (downwards in
// memory).
inline size_t PaddingBytes(size_t buf_size, size_t scalar_size) {
return ((~buf_size) + 1) & (scalar_size - 1);
}
// Helper class to hold data needed in creation of a flat buffer.
// To serialize data, you typically call one of the Create*() functions in
// the generated code, which in turn call a sequence of StartTable/PushElement/
// AddElement/EndTable, or the builtin CreateString/CreateVector functions.
// Do this is depth-first order to build up a tree to the root.
// Finish() wraps up the buffer ready for transport.
class FlatBufferBuilder {
public:
explicit FlatBufferBuilder(uoffset_t initial_size = 1024,
const simple_allocator *allocator = nullptr)
: buf_(initial_size, allocator ? *allocator : default_allocator),
minalign_(1), force_defaults_(false) {
offsetbuf_.reserve(16); // Avoid first few reallocs.
vtables_.reserve(16);
EndianCheck();
}
// Reset all the state in this FlatBufferBuilder so it can be reused
// to construct another buffer.
void Clear() {
buf_.clear();
offsetbuf_.clear();
vtables_.clear();
}
// The current size of the serialized buffer, counting from the end.
uoffset_t GetSize() const { return buf_.size(); }
// Get the serialized buffer (after you call Finish()).
uint8_t *GetBufferPointer() const { return buf_.data(); }
void ForceDefaults(bool fd) { force_defaults_ = fd; }
void Pad(size_t num_bytes) { buf_.fill(num_bytes); }
void Align(size_t elem_size) {
if (elem_size > minalign_) minalign_ = elem_size;
buf_.fill(PaddingBytes(buf_.size(), elem_size));
}
void PushBytes(const uint8_t *bytes, size_t size) {
buf_.push(bytes, size);
}
void PopBytes(size_t amount) { buf_.pop(amount); }
template<typename T> void AssertScalarT() {
// The code assumes power of 2 sizes and endian-swap-ability.
static_assert(std::is_scalar<T>::value
// The Offset<T> type is essentially a scalar but fails is_scalar.
|| sizeof(T) == sizeof(Offset<void>),
"T must be a scalar type");
}
// Write a single aligned scalar to the buffer
template<typename T> uoffset_t PushElement(T element) {
AssertScalarT<T>();
T litle_endian_element = EndianScalar(element);
Align(sizeof(T));
PushBytes(reinterpret_cast<uint8_t *>(&litle_endian_element), sizeof(T));
return GetSize();
}
template<typename T> uoffset_t PushElement(Offset<T> off) {
// Special case for offsets: see ReferTo below.
return PushElement(ReferTo(off.o));
}
// When writing fields, we track where they are, so we can create correct
// vtables later.
void TrackField(voffset_t field, uoffset_t off) {
FieldLoc fl = { off, field };
offsetbuf_.push_back(fl);
}
// Like PushElement, but additionally tracks the field this represents.
template<typename T> void AddElement(voffset_t field, T e, T def) {
// We don't serialize values equal to the default.
if (e == def && !force_defaults_) return;
auto off = PushElement(e);
TrackField(field, off);
}
template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
if (!off.o) return; // An offset of 0 means NULL, don't store.
AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
}
template<typename T> void AddStruct(voffset_t field, const T *structptr) {
if (!structptr) return; // Default, don't store.
Align(AlignOf<T>());
PushBytes(reinterpret_cast<const uint8_t *>(structptr), sizeof(T));
TrackField(field, GetSize());
}
void AddStructOffset(voffset_t field, uoffset_t off) {
TrackField(field, off);
}
// Offsets initially are relative to the end of the buffer (downwards).
// This function converts them to be relative to the current location
// in the buffer (when stored here), pointing upwards.
uoffset_t ReferTo(uoffset_t off) {
Align(sizeof(uoffset_t)); // To ensure GetSize() below is correct.
assert(off <= GetSize()); // Must refer to something already in buffer.
return GetSize() - off + sizeof(uoffset_t);
}
void NotNested() {
// If you hit this, you're trying to construct an object when another
// hasn't finished yet.
assert(!offsetbuf_.size());
}
// From generated code (or from the parser), we call StartTable/EndTable
// with a sequence of AddElement calls in between.
uoffset_t StartTable() {
NotNested();
return GetSize();
}
// This finishes one serialized object by generating the vtable if it's a
// table, comparing it against existing vtables, and writing the
// resulting vtable offset.
uoffset_t EndTable(uoffset_t start, voffset_t numfields) {
// Write the vtable offset, which is the start of any Table.
// We fill it's value later.
auto vtableoffsetloc = PushElement<uoffset_t>(0);
// Write a vtable, which consists entirely of voffset_t elements.
// It starts with the number of offsets, followed by a type id, followed
// by the offsets themselves. In reverse:
buf_.fill(numfields * sizeof(voffset_t));
auto table_object_size = vtableoffsetloc - start;
assert(table_object_size < 0x10000); // Vtable use 16bit offsets.
PushElement<voffset_t>(static_cast<voffset_t>(table_object_size));
PushElement<voffset_t>(FieldIndexToOffset(numfields));
// Write the offsets into the table
for (auto field_location = offsetbuf_.begin();
field_location != offsetbuf_.end();
++field_location) {
auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off);
// If this asserts, it means you've set a field twice.
assert(!ReadScalar<voffset_t>(buf_.data() + field_location->id));
WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
}
offsetbuf_.clear();
auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
auto vt1_size = ReadScalar<voffset_t>(vt1);
auto vt_use = GetSize();
// See if we already have generated a vtable with this exact same
// layout before. If so, make it point to the old one, remove this one.
for (auto it = vtables_.begin(); it != vtables_.end(); ++it) {
if (memcmp(buf_.data_at(*it), vt1, vt1_size)) continue;
vt_use = *it;
buf_.pop(GetSize() - vtableoffsetloc);
break;
}
// If this is a new vtable, remember it.
if (vt_use == GetSize()) {
vtables_.push_back(vt_use);
}
// Fill the vtable offset we created above.
// The offset points from the beginning of the object to where the
// vtable is stored.
// Offsets default direction is downward in memory for future format
// flexibility (storing all vtables at the start of the file).
WriteScalar(buf_.data_at(vtableoffsetloc),
static_cast<soffset_t>(vt_use) -
static_cast<soffset_t>(vtableoffsetloc));
return vtableoffsetloc;
}
// This checks a required field has been set in a given table that has
// just been constructed.
template<typename T> void Required(Offset<T> table, voffset_t field) {
auto table_ptr = buf_.data_at(table.o);
auto vtable_ptr = table_ptr - ReadScalar<uoffset_t>(table_ptr);
bool ok = ReadScalar<voffset_t>(vtable_ptr + field) != 0;
// If this fails, the caller will show what field needs to be set.
assert(ok);
(void)ok;
}
uoffset_t StartStruct(size_t alignment) {
Align(alignment);
return GetSize();
}
uoffset_t EndStruct() { return GetSize(); }
void ClearOffsets() { offsetbuf_.clear(); }
// Aligns such that when "len" bytes are written, an object can be written
// after it with "alignment" without padding.
void PreAlign(size_t len, size_t alignment) {
buf_.fill(PaddingBytes(GetSize() + len, alignment));
}
template<typename T> void PreAlign(size_t len) {
AssertScalarT<T>();
PreAlign(len, sizeof(T));
}
// Functions to store strings, which are allowed to contain any binary data.
Offset<String> CreateString(const char *str, size_t len) {
NotNested();
PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
buf_.fill(1);
PushBytes(reinterpret_cast<const uint8_t *>(str), len);
PushElement(static_cast<uoffset_t>(len));
return Offset<String>(GetSize());
}
Offset<String> CreateString(const char *str) {
return CreateString(str, strlen(str));
}
Offset<String> CreateString(const std::string &str) {
return CreateString(str.c_str(), str.length());
}
uoffset_t EndVector(size_t len) {
return PushElement(static_cast<uoffset_t>(len));
}
void StartVector(size_t len, size_t elemsize) {
PreAlign<uoffset_t>(len * elemsize);
PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t.
}
uint8_t *ReserveElements(size_t len, size_t elemsize) {
return buf_.make_space(len * elemsize);
}
template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) {
NotNested();
StartVector(len, sizeof(T));
for (auto i = len; i > 0; ) {
PushElement(v[--i]);
}
return Offset<Vector<T>>(EndVector(len));
}
// Specialized version for non-copying use cases. Data to be written later.
// After calling this function, GetBufferPointer() can be cast to the
// corresponding Vector<> type to write the data (through Data()).
template<typename T> Offset<Vector<T>> CreateUninitializedVector(size_t len) {
NotNested();
StartVector(len, sizeof(T));
buf_.make_space(len * sizeof(T));
return Offset<Vector<T>>(EndVector(len));
}
template<typename T> Offset<Vector<T>> CreateVector(const std::vector<T> &v){
return CreateVector(v.data(), v.size());
}
template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
const T *v, size_t len) {
NotNested();
StartVector(len * sizeof(T) / AlignOf<T>(), AlignOf<T>());
PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
return Offset<Vector<const T *>>(EndVector(len));
}
template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
const std::vector<T> &v) {
return CreateVectorOfStructs(v.data(), v.size());
}
static const size_t kFileIdentifierLength = 4;
// Finish serializing a buffer by writing the root offset.
// If a file_identifier is given, the buffer will be prefix with a standard
// FlatBuffers file header.
template<typename T> void Finish(Offset<T> root,
const char *file_identifier = nullptr) {
// This will cause the whole buffer to be aligned.
PreAlign(sizeof(uoffset_t) + (file_identifier ? kFileIdentifierLength : 0),
minalign_);
if (file_identifier) {
assert(strlen(file_identifier) == kFileIdentifierLength);
buf_.push(reinterpret_cast<const uint8_t *>(file_identifier),
kFileIdentifierLength);
}
PushElement(ReferTo(root.o)); // Location of root.
}
private:
// You shouldn't really be copying instances of this class.
FlatBufferBuilder(const FlatBufferBuilder &);
FlatBufferBuilder &operator=(const FlatBufferBuilder &);
struct FieldLoc {
uoffset_t off;
voffset_t id;
};
simple_allocator default_allocator;
vector_downward buf_;
// Accumulating offsets of table members while it is being built.
std::vector<FieldLoc> offsetbuf_;
std::vector<uoffset_t> vtables_; // todo: Could make this into a map?
size_t minalign_;
bool force_defaults_; // Serialize values equal to their defaults anyway.
};
// Helper to get a typed pointer to the root object contained in the buffer.
template<typename T> const T *GetRoot(const void *buf) {
EndianCheck();
return reinterpret_cast<const T *>(reinterpret_cast<const uint8_t *>(buf) +
EndianScalar(*reinterpret_cast<const uoffset_t *>(buf)));
}
// Helper to see if the identifier in a buffer has the expected value.
inline bool BufferHasIdentifier(const void *buf, const char *identifier) {
return strncmp(reinterpret_cast<const char *>(buf) + sizeof(uoffset_t),
identifier, FlatBufferBuilder::kFileIdentifierLength) == 0;
}
// Helper class to verify the integrity of a FlatBuffer
class Verifier {
public:
Verifier(const uint8_t *buf, size_t buf_len, size_t _max_depth = 64,
size_t _max_tables = 1000000)
: buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth),
num_tables_(0), max_tables_(_max_tables)
{}
// Central location where any verification failures register.
bool Check(bool ok) const {
#ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
assert(ok);
#endif
return ok;
}
// Verify any range within the buffer.
bool Verify(const void *elem, size_t elem_len) const {
return Check(elem >= buf_ && elem <= end_ - elem_len);
}
// Verify a range indicated by sizeof(T).
template<typename T> bool Verify(const void *elem) const {
return Verify(elem, sizeof(T));
}
// Verify a pointer (may be NULL) of a table type.
template<typename T> bool VerifyTable(const T *table) {
return !table || table->Verify(*this);
}
// Verify a pointer (may be NULL) of any vector type.
template<typename T> bool Verify(const Vector<T> *vec) const {
const uint8_t *end;
return !vec ||
VerifyVector(reinterpret_cast<const uint8_t *>(vec), sizeof(T),
&end);
}
// Verify a pointer (may be NULL) to string.
bool Verify(const String *str) const {
const uint8_t *end;
return !str ||
(VerifyVector(reinterpret_cast<const uint8_t *>(str), 1, &end) &&
Verify(end, 1) && // Must have terminator
Check(*end == '\0')); // Terminating byte must be 0.
}
// Common code between vectors and strings.
bool VerifyVector(const uint8_t *vec, size_t elem_size,
const uint8_t **end) const {
// Check we can read the size field.
if (!Verify<uoffset_t>(vec)) return false;
// Check the whole array. If this is a string, the byte past the array
// must be 0.
auto size = ReadScalar<uoffset_t>(vec);
auto byte_size = sizeof(size) + elem_size * size;
*end = vec + byte_size;
return Verify(vec, byte_size);
}
// Special case for string contents, after the above has been called.
bool VerifyVectorOfStrings(const Vector<Offset<String>> *vec) const {
if (vec) {
for (uoffset_t i = 0; i < vec->size(); i++) {
if (!Verify(vec->Get(i))) return false;
}
}
return true;
}
// Special case for table contents, after the above has been called.
template<typename T> bool VerifyVectorOfTables(const Vector<Offset<T>> *vec) {
if (vec) {
for (uoffset_t i = 0; i < vec->size(); i++) {
if (!vec->Get(i)->Verify(*this)) return false;
}
}
return true;
}
// Verify this whole buffer, starting with root type T.
template<typename T> bool VerifyBuffer() {
// Call T::Verify, which must be in the generated code for this type.
return Verify<uoffset_t>(buf_) &&
reinterpret_cast<const T *>(buf_ + ReadScalar<uoffset_t>(buf_))->
Verify(*this);
}
// Called at the start of a table to increase counters measuring data
// structure depth and amount, and possibly bails out with false if
// limits set by the constructor have been hit. Needs to be balanced
// with EndTable().
bool VerifyComplexity() {
depth_++;
num_tables_++;
return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
}
// Called at the end of a table to pop the depth count.
bool EndTable() {
depth_--;
return true;
}
private:
const uint8_t *buf_;
const uint8_t *end_;
size_t depth_;
size_t max_depth_;
size_t num_tables_;
size_t max_tables_;
};
// "structs" are flat structures that do not have an offset table, thus
// always have all members present and do not support forwards/backwards
// compatible extensions.
class Struct {
public:
template<typename T> T GetField(uoffset_t o) const {
return ReadScalar<T>(&data_[o]);
}
template<typename T> T GetPointer(uoffset_t o) const {
auto p = &data_[o];
return reinterpret_cast<T>(p + ReadScalar<uoffset_t>(p));
}
template<typename T> T GetStruct(uoffset_t o) const {
return reinterpret_cast<T>(&data_[o]);
}
private:
uint8_t data_[1];
};
// "tables" use an offset table (possibly shared) that allows fields to be
// omitted and added at will, but uses an extra indirection to read.
class Table {
public:
// This gets the field offset for any of the functions below it, or 0
// if the field was not present.
voffset_t GetOptionalFieldOffset(voffset_t field) const {
// The vtable offset is always at the start.
auto vtable = data_ - ReadScalar<soffset_t>(data_);
// The first element is the size of the vtable (fields + type id + itself).
auto vtsize = ReadScalar<voffset_t>(vtable);
// If the field we're accessing is outside the vtable, we're reading older
// data, so it's the same as if the offset was 0 (not present).
return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
}
template<typename T> T GetField(voffset_t field, T defaultval) const {
auto field_offset = GetOptionalFieldOffset(field);
return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
}
template<typename P> P GetPointer(voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
auto p = data_ + field_offset;
return field_offset
? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
: nullptr;
}
template<typename P> P GetStruct(voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
return field_offset ? reinterpret_cast<P>(data_ + field_offset) : nullptr;
}
template<typename T> void SetField(voffset_t field, T val) {
auto field_offset = GetOptionalFieldOffset(field);
// If this asserts, you're trying to set a field that's not there
// (or should we return a bool instead?).
// check if it exists first using CheckField()
assert(field_offset);
WriteScalar(data_ + field_offset, val);
}
bool CheckField(voffset_t field) const {
return GetOptionalFieldOffset(field) != 0;
}
// Verify the vtable of this table.
// Call this once per table, followed by VerifyField once per field.
bool VerifyTableStart(Verifier &verifier) const {
// Check the vtable offset.
if (!verifier.Verify<soffset_t>(data_)) return false;
auto vtable = data_ - ReadScalar<soffset_t>(data_);
// Check the vtable size field, then check vtable fits in its entirety.
return verifier.VerifyComplexity() &&
verifier.Verify<voffset_t>(vtable) &&
verifier.Verify(vtable, ReadScalar<voffset_t>(vtable));
}
// Verify a particular field.
template<typename T> bool VerifyField(const Verifier &verifier,
voffset_t field) const {
// Calling GetOptionalFieldOffset should be safe now thanks to
// VerifyTable().
auto field_offset = GetOptionalFieldOffset(field);
// Check the actual field.
return !field_offset || verifier.Verify<T>(data_ + field_offset);
}
// VerifyField for required fields.
template<typename T> bool VerifyFieldRequired(const Verifier &verifier,
voffset_t field) const {
auto field_offset = GetOptionalFieldOffset(field);
return verifier.Check(field_offset != 0) &&
verifier.Verify<T>(data_ + field_offset);
}
private:
// private constructor & copy constructor: you obtain instances of this
// class by pointing to existing data only
Table();
Table(const Table &other);
uint8_t data_[1];
};
// Utility function for reverse lookups on the EnumNames*() functions
// (in the generated C++ code)
// names must be NULL terminated.
inline int LookupEnum(const char **names, const char *name) {
for (const char **p = names; *p; p++)
if (!strcmp(*p, name))
return static_cast<int>(p - names);
return -1;
}
// These macros allow us to layout a struct with a guarantee that they'll end
// up looking the same on different compilers and platforms.
// It does this by disallowing the compiler to do any padding, and then
// does padding itself by inserting extra padding fields that make every
// element aligned to its own size.
// Additionally, it manually sets the alignment of the struct as a whole,
// which is typically its largest element, or a custom size set in the schema
// by the force_align attribute.
// These are used in the generated code only.
#if defined(_MSC_VER)
#define MANUALLY_ALIGNED_STRUCT(alignment) \
__pragma(pack(1)); \
struct __declspec(align(alignment))
#define STRUCT_END(name, size) \
__pragma(pack()); \
static_assert(sizeof(name) == size, "compiler breaks packing rules")
#elif defined(__GNUC__) || defined(__clang__)
#define MANUALLY_ALIGNED_STRUCT(alignment) \
_Pragma("pack(1)") \
struct __attribute__((aligned(alignment)))
#define STRUCT_END(name, size) \
_Pragma("pack()") \
static_assert(sizeof(name) == size, "compiler breaks packing rules")
#else
#error Unknown compiler, please define structure alignment macros
#endif
// String which identifies the current version of FlatBuffers.
// flatbuffer_version_string is used by Google developers to identify which
// applications uploaded to Google Play are using this library. This allows
// the development team at Google to determine the popularity of the library.
// How it works: Applications that are uploaded to the Google Play Store are
// scanned for this version string. We track which applications are using it
// to measure popularity. You are free to remove it (of course) but we would
// appreciate if you left it in.
// Weak linkage is culled by VS & doesn't work on cygwin.
#if !defined(_WIN32) && !defined(__CYGWIN__)
extern volatile __attribute__((weak)) const char *flatbuffer_version_string;
volatile __attribute__((weak)) const char *flatbuffer_version_string =
"FlatBuffers "
FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "."
FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "."
FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION);
#endif // !defined(_WIN32) && !defined(__CYGWIN__)
} // namespace flatbuffers
#endif // FLATBUFFERS_H_