etc1.cpp 21.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
// Copyright 2009 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "base/etc1.h"

#include <string.h>

/* From http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt

 The number of bits that represent a 4x4 texel block is 64 bits if
 <internalformat> is given by ETC1_RGB8_OES.

 The data for a block is a number of bytes,

 {q0, q1, q2, q3, q4, q5, q6, q7}

 where byte q0 is located at the lowest memory address and q7 at
 the highest. The 64 bits specifying the block is then represented
 by the following 64 bit integer:

 int64bit = 256*(256*(256*(256*(256*(256*(256*q0+q1)+q2)+q3)+q4)+q5)+q6)+q7;

 ETC1_RGB8_OES:

 a) bit layout in bits 63 through 32 if diffbit = 0

 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
 -----------------------------------------------
 | base col1 | base col2 | base col1 | base col2 |
 | R1 (4bits)| R2 (4bits)| G1 (4bits)| G2 (4bits)|
 -----------------------------------------------

 47 46 45 44 43 42 41 40 39 38 37 36 35 34  33  32
 ---------------------------------------------------
 | base col1 | base col2 | table  | table  |diff|flip|
 | B1 (4bits)| B2 (4bits)| cw 1   | cw 2   |bit |bit |
 ---------------------------------------------------


 b) bit layout in bits 63 through 32 if diffbit = 1

 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
 -----------------------------------------------
 | base col1    | dcol 2 | base col1    | dcol 2 |
 | R1' (5 bits) | dR2    | G1' (5 bits) | dG2    |
 -----------------------------------------------

 47 46 45 44 43 42 41 40 39 38 37 36 35 34  33  32
 ---------------------------------------------------
 | base col 1   | dcol 2 | table  | table  |diff|flip|
 | B1' (5 bits) | dB2    | cw 1   | cw 2   |bit |bit |
 ---------------------------------------------------


 c) bit layout in bits 31 through 0 (in both cases)

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
 -----------------------------------------------
 |       most significant pixel index bits       |
 | p| o| n| m| l| k| j| i| h| g| f| e| d| c| b| a|
 -----------------------------------------------

 15 14 13 12 11 10  9  8  7  6  5  4  3   2   1  0
 --------------------------------------------------
 |         least significant pixel index bits       |
 | p| o| n| m| l| k| j| i| h| g| f| e| d| c | b | a |
 --------------------------------------------------


 Add table 3.17.2: Intensity modifier sets for ETC1 compressed textures:

 table codeword                modifier table
 ------------------        ----------------------
 0                     -8  -2  2   8
 1                    -17  -5  5  17
 2                    -29  -9  9  29
 3                    -42 -13 13  42
 4                    -60 -18 18  60
 5                    -80 -24 24  80
 6                   -106 -33 33 106
 7                   -183 -47 47 183


 Add table 3.17.3 Mapping from pixel index values to modifier values for
 ETC1 compressed textures:

 pixel index value
 ---------------
 msb     lsb           resulting modifier value
 -----   -----          -------------------------
 1       1            -b (large negative value)
 1       0            -a (small negative value)
 0       0             a (small positive value)
 0       1             b (large positive value)


 */

static const int kModifierTable[] = {
/* 0 */2, 8, -2, -8,
/* 1 */5, 17, -5, -17,
/* 2 */9, 29, -9, -29,
/* 3 */13, 42, -13, -42,
/* 4 */18, 60, -18, -60,
/* 5 */24, 80, -24, -80,
/* 6 */33, 106, -33, -106,
/* 7 */47, 183, -47, -183 };

static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 };

static inline etc1_byte clamp(int x) {
    return (etc1_byte) (x >= 0 ? (x < 255 ? x : 255) : 0);
}

static
inline int convert4To8(int b) {
    int c = b & 0xf;
    return (c << 4) | c;
}

static
inline int convert5To8(int b) {
    int c = b & 0x1f;
    return (c << 3) | (c >> 2);
}

static
inline int convert6To8(int b) {
    int c = b & 0x3f;
    return (c << 2) | (c >> 4);
}

static
inline int divideBy255(int d) {
    return (d + 128 + (d >> 8)) >> 8;
}

static
inline int convert8To4(int b) {
    int c = b & 0xff;
    return divideBy255(c * 15);
}

static
inline int convert8To5(int b) {
    int c = b & 0xff;
    return divideBy255(c * 31);
}

static
inline int convertDiff(int base, int diff) {
    return convert5To8((0x1f & base) + kLookup[0x7 & diff]);
}

static
void decode_subblock(etc1_byte* pOut, int r, int g, int b, const int* table,
        etc1_uint32 low, bool second, bool flipped) {
    int baseX = 0;
    int baseY = 0;
    if (second) {
        if (flipped) {
            baseY = 2;
        } else {
            baseX = 2;
        }
    }
    for (int i = 0; i < 8; i++) {
        int x, y;
        if (flipped) {
            x = baseX + (i >> 1);
            y = baseY + (i & 1);
        } else {
            x = baseX + (i >> 2);
            y = baseY + (i & 3);
        }
        int k = y + (x * 4);
        int offset = ((low >> k) & 1) | ((low >> (k + 15)) & 2);
        int delta = table[offset];
        etc1_byte* q = pOut + 3 * (x + 4 * y);
        *q++ = clamp(r + delta);
        *q++ = clamp(g + delta);
        *q++ = clamp(b + delta);
    }
}

// Input is an ETC1 compressed version of the data.
// Output is a 4 x 4 square of 3-byte pixels in form R, G, B

void etc1_decode_block(const etc1_byte* pIn, etc1_byte* pOut) {
    etc1_uint32 high = (pIn[0] << 24) | (pIn[1] << 16) | (pIn[2] << 8) | pIn[3];
    etc1_uint32 low = (pIn[4] << 24) | (pIn[5] << 16) | (pIn[6] << 8) | pIn[7];
    int r1, r2, g1, g2, b1, b2;
    if (high & 2) {
        // differential
        int rBase = high >> 27;
        int gBase = high >> 19;
        int bBase = high >> 11;
        r1 = convert5To8(rBase);
        r2 = convertDiff(rBase, high >> 24);
        g1 = convert5To8(gBase);
        g2 = convertDiff(gBase, high >> 16);
        b1 = convert5To8(bBase);
        b2 = convertDiff(bBase, high >> 8);
    } else {
        // not differential
        r1 = convert4To8(high >> 28);
        r2 = convert4To8(high >> 24);
        g1 = convert4To8(high >> 20);
        g2 = convert4To8(high >> 16);
        b1 = convert4To8(high >> 12);
        b2 = convert4To8(high >> 8);
    }
    int tableIndexA = 7 & (high >> 5);
    int tableIndexB = 7 & (high >> 2);
    const int* tableA = kModifierTable + tableIndexA * 4;
    const int* tableB = kModifierTable + tableIndexB * 4;
    bool flipped = (high & 1) != 0;
    decode_subblock(pOut, r1, g1, b1, tableA, low, false, flipped);
    decode_subblock(pOut, r2, g2, b2, tableB, low, true, flipped);
}

typedef struct {
    etc1_uint32 high;
    etc1_uint32 low;
    etc1_uint32 score; // Lower is more accurate
} etc_compressed;

static
inline void take_best(etc_compressed* a, const etc_compressed* b) {
    if (a->score > b->score) {
        *a = *b;
    }
}

static
void etc_average_colors_subblock(const etc1_byte* pIn, etc1_uint32 inMask,
        etc1_byte* pColors, bool flipped, bool second) {
    int r = 0;
    int g = 0;
    int b = 0;

    if (flipped) {
        int by = 0;
        if (second) {
            by = 2;
        }
        for (int y = 0; y < 2; y++) {
            int yy = by + y;
            for (int x = 0; x < 4; x++) {
                int i = x + 4 * yy;
                if (inMask & (1 << i)) {
                    const etc1_byte* p = pIn + i * 3;
                    r += *(p++);
                    g += *(p++);
                    b += *(p++);
                }
            }
        }
    } else {
        int bx = 0;
        if (second) {
            bx = 2;
        }
        for (int y = 0; y < 4; y++) {
            for (int x = 0; x < 2; x++) {
                int xx = bx + x;
                int i = xx + 4 * y;
                if (inMask & (1 << i)) {
                    const etc1_byte* p = pIn + i * 3;
                    r += *(p++);
                    g += *(p++);
                    b += *(p++);
                }
            }
        }
    }
    pColors[0] = (etc1_byte)((r + 4) >> 3);
    pColors[1] = (etc1_byte)((g + 4) >> 3);
    pColors[2] = (etc1_byte)((b + 4) >> 3);
}

static
inline int square(int x) {
    return x * x;
}

static etc1_uint32 chooseModifier(const etc1_byte* pBaseColors,
        const etc1_byte* pIn, etc1_uint32 *pLow, int bitIndex,
        const int* pModifierTable) {
    etc1_uint32 bestScore = ~0;
    int bestIndex = 0;
    int pixelR = pIn[0];
    int pixelG = pIn[1];
    int pixelB = pIn[2];
    int r = pBaseColors[0];
    int g = pBaseColors[1];
    int b = pBaseColors[2];
    for (int i = 0; i < 4; i++) {
        int modifier = pModifierTable[i];
        int decodedG = clamp(g + modifier);
        etc1_uint32 score = (etc1_uint32) (6 * square(decodedG - pixelG));
        if (score >= bestScore) {
            continue;
        }
        int decodedR = clamp(r + modifier);
        score += (etc1_uint32) (3 * square(decodedR - pixelR));
        if (score >= bestScore) {
            continue;
        }
        int decodedB = clamp(b + modifier);
        score += (etc1_uint32) square(decodedB - pixelB);
        if (score < bestScore) {
            bestScore = score;
            bestIndex = i;
        }
    }
    etc1_uint32 lowMask = (((bestIndex >> 1) << 16) | (bestIndex & 1))
            << bitIndex;
    *pLow |= lowMask;
    return bestScore;
}

static
void etc_encode_subblock_helper(const etc1_byte* pIn, etc1_uint32 inMask,
        etc_compressed* pCompressed, bool flipped, bool second,
        const etc1_byte* pBaseColors, const int* pModifierTable) {
    int score = pCompressed->score;
    if (flipped) {
        int by = 0;
        if (second) {
            by = 2;
        }
        for (int y = 0; y < 2; y++) {
            int yy = by + y;
            for (int x = 0; x < 4; x++) {
                int i = x + 4 * yy;
                if (inMask & (1 << i)) {
                    score += chooseModifier(pBaseColors, pIn + i * 3,
                            &pCompressed->low, yy + x * 4, pModifierTable);
                }
            }
        }
    } else {
        int bx = 0;
        if (second) {
            bx = 2;
        }
        for (int y = 0; y < 4; y++) {
            for (int x = 0; x < 2; x++) {
                int xx = bx + x;
                int i = xx + 4 * y;
                if (inMask & (1 << i)) {
                    score += chooseModifier(pBaseColors, pIn + i * 3,
                            &pCompressed->low, y + xx * 4, pModifierTable);
                }
            }
        }
    }
    pCompressed->score = score;
}

static bool inRange4bitSigned(int color) {
    return color >= -4 && color <= 3;
}

static void etc_encodeBaseColors(etc1_byte* pBaseColors,
        const etc1_byte* pColors, etc_compressed* pCompressed) {
    int r1, g1, b1, r2, g2, b2; // 8 bit base colors for sub-blocks
    bool differential;
    {
        int r51 = convert8To5(pColors[0]);
        int g51 = convert8To5(pColors[1]);
        int b51 = convert8To5(pColors[2]);
        int r52 = convert8To5(pColors[3]);
        int g52 = convert8To5(pColors[4]);
        int b52 = convert8To5(pColors[5]);

        r1 = convert5To8(r51);
        g1 = convert5To8(g51);
        b1 = convert5To8(b51);

        int dr = r52 - r51;
        int dg = g52 - g51;
        int db = b52 - b51;

        differential = inRange4bitSigned(dr) && inRange4bitSigned(dg)
                && inRange4bitSigned(db);
        if (differential) {
            r2 = convert5To8(r51 + dr);
            g2 = convert5To8(g51 + dg);
            b2 = convert5To8(b51 + db);
            pCompressed->high |= (r51 << 27) | ((7 & dr) << 24) | (g51 << 19)
                    | ((7 & dg) << 16) | (b51 << 11) | ((7 & db) << 8) | 2;
        }
    }

    if (!differential) {
        int r41 = convert8To4(pColors[0]);
        int g41 = convert8To4(pColors[1]);
        int b41 = convert8To4(pColors[2]);
        int r42 = convert8To4(pColors[3]);
        int g42 = convert8To4(pColors[4]);
        int b42 = convert8To4(pColors[5]);
        r1 = convert4To8(r41);
        g1 = convert4To8(g41);
        b1 = convert4To8(b41);
        r2 = convert4To8(r42);
        g2 = convert4To8(g42);
        b2 = convert4To8(b42);
        pCompressed->high |= (r41 << 28) | (r42 << 24) | (g41 << 20) | (g42
                << 16) | (b41 << 12) | (b42 << 8);
    }
    pBaseColors[0] = r1;
    pBaseColors[1] = g1;
    pBaseColors[2] = b1;
    pBaseColors[3] = r2;
    pBaseColors[4] = g2;
    pBaseColors[5] = b2;
}

static
void etc_encode_block_helper(const etc1_byte* pIn, etc1_uint32 inMask,
        const etc1_byte* pColors, etc_compressed* pCompressed, bool flipped) {
    pCompressed->score = ~0;
    pCompressed->high = (flipped ? 1 : 0);
    pCompressed->low = 0;

    etc1_byte pBaseColors[6];

    etc_encodeBaseColors(pBaseColors, pColors, pCompressed);

    int originalHigh = pCompressed->high;

    const int* pModifierTable = kModifierTable;
    for (int i = 0; i < 8; i++, pModifierTable += 4) {
        etc_compressed temp;
        temp.score = 0;
        temp.high = originalHigh | (i << 5);
        temp.low = 0;
        etc_encode_subblock_helper(pIn, inMask, &temp, flipped, false,
                pBaseColors, pModifierTable);
        take_best(pCompressed, &temp);
    }
    pModifierTable = kModifierTable;
    etc_compressed firstHalf = *pCompressed;
    for (int i = 0; i < 8; i++, pModifierTable += 4) {
        etc_compressed temp;
        temp.score = firstHalf.score;
        temp.high = firstHalf.high | (i << 2);
        temp.low = firstHalf.low;
        etc_encode_subblock_helper(pIn, inMask, &temp, flipped, true,
                pBaseColors + 3, pModifierTable);
        if (i == 0) {
            *pCompressed = temp;
        } else {
            take_best(pCompressed, &temp);
        }
    }
}

static void writeBigEndian(etc1_byte* pOut, etc1_uint32 d) {
    pOut[0] = (etc1_byte)(d >> 24);
    pOut[1] = (etc1_byte)(d >> 16);
    pOut[2] = (etc1_byte)(d >> 8);
    pOut[3] = (etc1_byte) d;
}

// Input is a 4 x 4 square of 3-byte pixels in form R, G, B
// inmask is a 16-bit mask where bit (1 << (x + y * 4)) tells whether the corresponding (x,y)
// pixel is valid or not. Invalid pixel color values are ignored when compressing.
// Output is an ETC1 compressed version of the data.

void etc1_encode_block(const etc1_byte* pIn, etc1_uint32 inMask,
        etc1_byte* pOut) {
    etc1_byte colors[6];
    etc1_byte flippedColors[6];
    etc_average_colors_subblock(pIn, inMask, colors, false, false);
    etc_average_colors_subblock(pIn, inMask, colors + 3, false, true);
    etc_average_colors_subblock(pIn, inMask, flippedColors, true, false);
    etc_average_colors_subblock(pIn, inMask, flippedColors + 3, true, true);

    etc_compressed a, b;
    etc_encode_block_helper(pIn, inMask, colors, &a, false);
    etc_encode_block_helper(pIn, inMask, flippedColors, &b, true);
    take_best(&a, &b);
    writeBigEndian(pOut, a.high);
    writeBigEndian(pOut + 4, a.low);
}

// Return the size of the encoded image data (does not include size of PKM header).

etc1_uint32 etc1_get_encoded_data_size(etc1_uint32 width, etc1_uint32 height) {
    return (((width + 3) & ~3) * ((height + 3) & ~3)) >> 1;
}

// Encode an entire image.
// pIn - pointer to the image data. Formatted such that the Red component of
//       pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset;
// pOut - pointer to encoded data. Must be large enough to store entire encoded image.

int etc1_encode_image(const etc1_byte* pIn, etc1_uint32 width, etc1_uint32 height,
        etc1_uint32 pixelSize, etc1_uint32 stride, etc1_byte* pOut) {
    if (pixelSize < 2 || pixelSize > 3) {
        return -1;
    }
    static const unsigned short kYMask[] = { 0x0, 0xf, 0xff, 0xfff, 0xffff };
    static const unsigned short kXMask[] = { 0x0, 0x1111, 0x3333, 0x7777,
            0xffff };
    etc1_byte block[ETC1_DECODED_BLOCK_SIZE];
    etc1_byte encoded[ETC1_ENCODED_BLOCK_SIZE];

    etc1_uint32 encodedWidth = (width + 3) & ~3;
    etc1_uint32 encodedHeight = (height + 3) & ~3;

    for (etc1_uint32 y = 0; y < encodedHeight; y += 4) {
        etc1_uint32 yEnd = height - y;
        if (yEnd > 4) {
            yEnd = 4;
        }
        int ymask = kYMask[yEnd];
        for (etc1_uint32 x = 0; x < encodedWidth; x += 4) {
            etc1_uint32 xEnd = width - x;
            if (xEnd > 4) {
                xEnd = 4;
            }
            int mask = ymask & kXMask[xEnd];
            for (etc1_uint32 cy = 0; cy < yEnd; cy++) {
                etc1_byte* q = block + (cy * 4) * 3;
                const etc1_byte* p = pIn + pixelSize * x + stride * (y + cy);
                if (pixelSize == 3) {
                    memcpy(q, p, xEnd * 3);
                } else {
                    for (etc1_uint32 cx = 0; cx < xEnd; cx++) {
                        int pixel = (p[1] << 8) | p[0];
                        *q++ = convert5To8(pixel >> 11);
                        *q++ = convert6To8(pixel >> 5);
                        *q++ = convert5To8(pixel);
                        p += pixelSize;
                    }
                }
            }
            etc1_encode_block(block, mask, encoded);
            memcpy(pOut, encoded, sizeof(encoded));
            pOut += sizeof(encoded);
        }
    }
    return 0;
}

// Decode an entire image.
// pIn - pointer to encoded data.
// pOut - pointer to the image data. Will be written such that the Red component of
//       pixel (x,y) is at pIn + pixelSize * x + stride * y + redOffset. Must be
//        large enough to store entire image.


int etc1_decode_image(const etc1_byte* pIn, etc1_byte* pOut,
        etc1_uint32 width, etc1_uint32 height,
        etc1_uint32 pixelSize, etc1_uint32 stride) {
    if (pixelSize < 2 || pixelSize > 3) {
        return -1;
    }
    etc1_byte block[ETC1_DECODED_BLOCK_SIZE];

    etc1_uint32 encodedWidth = (width + 3) & ~3;
    etc1_uint32 encodedHeight = (height + 3) & ~3;

    for (etc1_uint32 y = 0; y < encodedHeight; y += 4) {
        etc1_uint32 yEnd = height - y;
        if (yEnd > 4) {
            yEnd = 4;
        }
        for (etc1_uint32 x = 0; x < encodedWidth; x += 4) {
            etc1_uint32 xEnd = width - x;
            if (xEnd > 4) {
                xEnd = 4;
            }
            etc1_decode_block(pIn, block);
            pIn += ETC1_ENCODED_BLOCK_SIZE;
            for (etc1_uint32 cy = 0; cy < yEnd; cy++) {
                const etc1_byte* q = block + (cy * 4) * 3;
                etc1_byte* p = pOut + pixelSize * x + stride * (y + cy);
                if (pixelSize == 3) {
                    memcpy(p, q, xEnd * 3);
                } else {
                    for (etc1_uint32 cx = 0; cx < xEnd; cx++) {
                        etc1_byte r = *q++;
                        etc1_byte g = *q++;
                        etc1_byte b = *q++;
                        etc1_uint32 pixel = ((r >> 3) << 11) | ((g >> 2) << 5) | (b >> 3);
                        *p++ = (etc1_byte) pixel;
                        *p++ = (etc1_byte) (pixel >> 8);
                    }
                }
            }
        }
    }
    return 0;
}

static const char kMagic[] = { 'P', 'K', 'M', ' ', '1', '0' };

static const etc1_uint32 ETC1_PKM_FORMAT_OFFSET = 6;
static const etc1_uint32 ETC1_PKM_ENCODED_WIDTH_OFFSET = 8;
static const etc1_uint32 ETC1_PKM_ENCODED_HEIGHT_OFFSET = 10;
static const etc1_uint32 ETC1_PKM_WIDTH_OFFSET = 12;
static const etc1_uint32 ETC1_PKM_HEIGHT_OFFSET = 14;

static const etc1_uint32 ETC1_RGB_NO_MIPMAPS = 0;

static void writeBEUint16(etc1_byte* pOut, etc1_uint32 data) {
    pOut[0] = (etc1_byte) (data >> 8);
    pOut[1] = (etc1_byte) data;
}

static etc1_uint32 readBEUint16(const etc1_byte* pIn) {
    return (pIn[0] << 8) | pIn[1];
}

// Format a PKM header

void etc1_pkm_format_header(etc1_byte* pHeader, etc1_uint32 width, etc1_uint32 height) {
    memcpy(pHeader, kMagic, sizeof(kMagic));
    etc1_uint32 encodedWidth = (width + 3) & ~3;
    etc1_uint32 encodedHeight = (height + 3) & ~3;
    writeBEUint16(pHeader + ETC1_PKM_FORMAT_OFFSET, ETC1_RGB_NO_MIPMAPS);
    writeBEUint16(pHeader + ETC1_PKM_ENCODED_WIDTH_OFFSET, encodedWidth);
    writeBEUint16(pHeader + ETC1_PKM_ENCODED_HEIGHT_OFFSET, encodedHeight);
    writeBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET, width);
    writeBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET, height);
}

// Check if a PKM header is correctly formatted.

etc1_bool etc1_pkm_is_valid(const etc1_byte* pHeader) {
    if (memcmp(pHeader, kMagic, sizeof(kMagic))) {
        return false;
    }
    etc1_uint32 format = readBEUint16(pHeader + ETC1_PKM_FORMAT_OFFSET);
    etc1_uint32 encodedWidth = readBEUint16(pHeader + ETC1_PKM_ENCODED_WIDTH_OFFSET);
    etc1_uint32 encodedHeight = readBEUint16(pHeader + ETC1_PKM_ENCODED_HEIGHT_OFFSET);
    etc1_uint32 width = readBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET);
    etc1_uint32 height = readBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET);
    return format == ETC1_RGB_NO_MIPMAPS &&
            encodedWidth >= width && encodedWidth - width < 4 &&
            encodedHeight >= height && encodedHeight - height < 4;
}

// Read the image width from a PKM header

etc1_uint32 etc1_pkm_get_width(const etc1_byte* pHeader) {
    return readBEUint16(pHeader + ETC1_PKM_WIDTH_OFFSET);
}

// Read the image height from a PKM header

etc1_uint32 etc1_pkm_get_height(const etc1_byte* pHeader){
    return readBEUint16(pHeader + ETC1_PKM_HEIGHT_OFFSET);
}