idl_parser.cpp
39.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
namespace flatbuffers {
const char *const kTypeNames[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
nullptr
};
const char kTypeSizes[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
sizeof(CTYPE),
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
static void Error(const std::string &msg) {
throw msg;
}
// Ensure that integer values we parse fit inside the declared integer type.
static void CheckBitsFit(int64_t val, size_t bits) {
auto mask = (1ll << bits) - 1; // Bits we allow to be used.
if (bits < 64 &&
(val & ~mask) != 0 && // Positive or unsigned.
(val | mask) != -1) // Negative.
Error("constant does not fit in a " + NumToString(bits) + "-bit field");
}
// atot: templated version of atoi/atof: convert a string to an instance of T.
template<typename T> inline T atot(const char *s) {
auto val = StringToInt(s);
CheckBitsFit(val, sizeof(T) * 8);
return (T)val;
}
template<> inline bool atot<bool>(const char *s) {
return 0 != atoi(s);
}
template<> inline float atot<float>(const char *s) {
return static_cast<float>(strtod(s, nullptr));
}
template<> inline double atot<double>(const char *s) {
return strtod(s, nullptr);
}
template<> inline Offset<void> atot<Offset<void>>(const char *s) {
return Offset<void>(atoi(s));
}
// Declare tokens we'll use. Single character tokens are represented by their
// ascii character code (e.g. '{'), others above 256.
#define FLATBUFFERS_GEN_TOKENS(TD) \
TD(Eof, 256, "end of file") \
TD(StringConstant, 257, "string constant") \
TD(IntegerConstant, 258, "integer constant") \
TD(FloatConstant, 259, "float constant") \
TD(Identifier, 260, "identifier") \
TD(Table, 261, "table") \
TD(Struct, 262, "struct") \
TD(Enum, 263, "enum") \
TD(Union, 264, "union") \
TD(NameSpace, 265, "namespace") \
TD(RootType, 266, "root_type") \
TD(FileIdentifier, 267, "file_identifier") \
TD(FileExtension, 268, "file_extension") \
TD(Include, 269, "include")
#ifdef __GNUC__
__extension__ // Stop GCC complaining about trailing comma with -Wpendantic.
#endif
enum {
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
kToken ## ENUM,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
static std::string TokenToString(int t) {
static const char *tokens[] = {
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
if (t < 256) { // A single ascii char token.
std::string s;
s.append(1, static_cast<char>(t));
return s;
} else { // Other tokens.
return tokens[t - 256];
}
}
// Parses exactly nibbles worth of hex digits into a number, or error.
int64_t Parser::ParseHexNum(int nibbles) {
for (int i = 0; i < nibbles; i++)
if (!isxdigit(cursor_[i]))
Error("escape code must be followed by " + NumToString(nibbles) +
" hex digits");
auto val = StringToInt(cursor_, 16);
cursor_ += nibbles;
return val;
}
void Parser::Next() {
doc_comment_.clear();
bool seen_newline = false;
for (;;) {
char c = *cursor_++;
token_ = c;
switch (c) {
case '\0': cursor_--; token_ = kTokenEof; return;
case ' ': case '\r': case '\t': break;
case '\n': line_++; seen_newline = true; break;
case '{': case '}': case '(': case ')': case '[': case ']': return;
case ',': case ':': case ';': case '=': return;
case '.':
if(!isdigit(*cursor_)) return;
Error("floating point constant can\'t start with \".\"");
break;
case '\"':
attribute_ = "";
while (*cursor_ != '\"') {
if (*cursor_ < ' ' && *cursor_ >= 0)
Error("illegal character in string constant");
if (*cursor_ == '\\') {
cursor_++;
switch (*cursor_) {
case 'n': attribute_ += '\n'; cursor_++; break;
case 't': attribute_ += '\t'; cursor_++; break;
case 'r': attribute_ += '\r'; cursor_++; break;
case 'b': attribute_ += '\b'; cursor_++; break;
case 'f': attribute_ += '\f'; cursor_++; break;
case '\"': attribute_ += '\"'; cursor_++; break;
case '\\': attribute_ += '\\'; cursor_++; break;
case '/': attribute_ += '/'; cursor_++; break;
case 'x': { // Not in the JSON standard
cursor_++;
attribute_ += static_cast<char>(ParseHexNum(2));
break;
}
case 'u': {
cursor_++;
ToUTF8(static_cast<int>(ParseHexNum(4)), &attribute_);
break;
}
default: Error("unknown escape code in string constant"); break;
}
} else { // printable chars + UTF-8 bytes
attribute_ += *cursor_++;
}
}
cursor_++;
token_ = kTokenStringConstant;
return;
case '/':
if (*cursor_ == '/') {
const char *start = ++cursor_;
while (*cursor_ && *cursor_ != '\n') cursor_++;
if (*start == '/') { // documentation comment
if (!seen_newline)
Error("a documentation comment should be on a line on its own");
doc_comment_.push_back(std::string(start + 1, cursor_));
}
break;
}
// fall thru
default:
if (isalpha(static_cast<unsigned char>(c))) {
// Collect all chars of an identifier:
const char *start = cursor_ - 1;
while (isalnum(static_cast<unsigned char>(*cursor_)) ||
*cursor_ == '_')
cursor_++;
attribute_.clear();
attribute_.append(start, cursor_);
// First, see if it is a type keyword from the table of types:
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
if (attribute_ == IDLTYPE) { \
token_ = kToken ## ENUM; \
return; \
}
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
// If it's a boolean constant keyword, turn those into integers,
// which simplifies our logic downstream.
if (attribute_ == "true" || attribute_ == "false") {
attribute_ = NumToString(attribute_ == "true");
token_ = kTokenIntegerConstant;
return;
}
// Check for declaration keywords:
if (attribute_ == "table") { token_ = kTokenTable; return; }
if (attribute_ == "struct") { token_ = kTokenStruct; return; }
if (attribute_ == "enum") { token_ = kTokenEnum; return; }
if (attribute_ == "union") { token_ = kTokenUnion; return; }
if (attribute_ == "namespace") { token_ = kTokenNameSpace; return; }
if (attribute_ == "root_type") { token_ = kTokenRootType; return; }
if (attribute_ == "include") { token_ = kTokenInclude; return; }
if (attribute_ == "file_identifier") {
token_ = kTokenFileIdentifier;
return;
}
if (attribute_ == "file_extension") {
token_ = kTokenFileExtension;
return;
}
// If not, it is a user-defined identifier:
token_ = kTokenIdentifier;
return;
} else if (isdigit(static_cast<unsigned char>(c)) || c == '-') {
const char *start = cursor_ - 1;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
if (*cursor_ == '.') {
cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
// See if this float has a scientific notation suffix. Both JSON
// and C++ (through strtod() we use) have the same format:
if (*cursor_ == 'e' || *cursor_ == 'E') {
cursor_++;
if (*cursor_ == '+' || *cursor_ == '-') cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
}
token_ = kTokenFloatConstant;
} else {
token_ = kTokenIntegerConstant;
}
attribute_.clear();
attribute_.append(start, cursor_);
return;
}
std::string ch;
ch = c;
if (c < ' ' || c > '~') ch = "code: " + NumToString(c);
Error("illegal character: " + ch);
break;
}
}
}
// Check if a given token is next, if so, consume it as well.
bool Parser::IsNext(int t) {
bool isnext = t == token_;
if (isnext) Next();
return isnext;
}
// Expect a given token to be next, consume it, or error if not present.
void Parser::Expect(int t) {
if (t != token_) {
Error("expecting: " + TokenToString(t) + " instead got: " +
TokenToString(token_));
}
Next();
}
void Parser::ParseTypeIdent(Type &type) {
auto enum_def = enums_.Lookup(attribute_);
if (enum_def) {
type = enum_def->underlying_type;
if (enum_def->is_union) type.base_type = BASE_TYPE_UNION;
} else {
type.base_type = BASE_TYPE_STRUCT;
type.struct_def = LookupCreateStruct(attribute_);
}
}
// Parse any IDL type.
void Parser::ParseType(Type &type) {
if (token_ >= kTokenBOOL && token_ <= kTokenSTRING) {
type.base_type = static_cast<BaseType>(token_ - kTokenNONE);
} else {
if (token_ == kTokenIdentifier) {
ParseTypeIdent(type);
} else if (token_ == '[') {
Next();
Type subtype;
ParseType(subtype);
if (subtype.base_type == BASE_TYPE_VECTOR) {
// We could support this, but it will complicate things, and it's
// easier to work around with a struct around the inner vector.
Error("nested vector types not supported (wrap in table first).");
}
if (subtype.base_type == BASE_TYPE_UNION) {
// We could support this if we stored a struct of 2 elements per
// union element.
Error("vector of union types not supported (wrap in table first).");
}
type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def);
type.element = subtype.base_type;
Expect(']');
return;
} else {
Error("illegal type syntax");
}
}
Next();
}
FieldDef &Parser::AddField(StructDef &struct_def,
const std::string &name,
const Type &type) {
auto &field = *new FieldDef();
field.value.offset =
FieldIndexToOffset(static_cast<voffset_t>(struct_def.fields.vec.size()));
field.name = name;
field.value.type = type;
if (struct_def.fixed) { // statically compute the field offset
auto size = InlineSize(type);
auto alignment = InlineAlignment(type);
// structs_ need to have a predictable format, so we need to align to
// the largest scalar
struct_def.minalign = std::max(struct_def.minalign, alignment);
struct_def.PadLastField(alignment);
field.value.offset = static_cast<voffset_t>(struct_def.bytesize);
struct_def.bytesize += size;
}
if (struct_def.fields.Add(name, &field))
Error("field already exists: " + name);
return field;
}
void Parser::ParseField(StructDef &struct_def) {
std::string name = attribute_;
std::vector<std::string> dc = doc_comment_;
Expect(kTokenIdentifier);
Expect(':');
Type type;
ParseType(type);
if (struct_def.fixed && !IsScalar(type.base_type) && !IsStruct(type))
Error("structs_ may contain only scalar or struct fields");
FieldDef *typefield = nullptr;
if (type.base_type == BASE_TYPE_UNION) {
// For union fields, add a second auto-generated field to hold the type,
// with _type appended as the name.
typefield = &AddField(struct_def, name + "_type",
type.enum_def->underlying_type);
}
auto &field = AddField(struct_def, name, type);
if (token_ == '=') {
Next();
if (!IsScalar(type.base_type))
Error("default values currently only supported for scalars");
ParseSingleValue(field.value);
}
if (type.enum_def &&
IsScalar(type.base_type) &&
!struct_def.fixed &&
!type.enum_def->attributes.Lookup("bit_flags") &&
!type.enum_def->ReverseLookup(static_cast<int>(
StringToInt(field.value.constant.c_str()))))
Error("enum " + type.enum_def->name +
" does not have a declaration for this field\'s default of " +
field.value.constant);
field.doc_comment = dc;
ParseMetaData(field);
field.deprecated = field.attributes.Lookup("deprecated") != nullptr;
if (field.deprecated && struct_def.fixed)
Error("can't deprecate fields in a struct");
field.required = field.attributes.Lookup("required") != nullptr;
if (field.required && (struct_def.fixed ||
IsScalar(field.value.type.base_type)))
Error("only non-scalar fields in tables may be 'required'");
auto nested = field.attributes.Lookup("nested_flatbuffer");
if (nested) {
if (nested->type.base_type != BASE_TYPE_STRING)
Error("nested_flatbuffer attribute must be a string (the root type)");
if (field.value.type.base_type != BASE_TYPE_VECTOR ||
field.value.type.element != BASE_TYPE_UCHAR)
Error("nested_flatbuffer attribute may only apply to a vector of ubyte");
// This will cause an error if the root type of the nested flatbuffer
// wasn't defined elsewhere.
LookupCreateStruct(nested->constant);
}
if (typefield) {
// If this field is a union, and it has a manually assigned id,
// the automatically added type field should have an id as well (of N - 1).
auto attr = field.attributes.Lookup("id");
if (attr) {
auto id = atoi(attr->constant.c_str());
auto val = new Value();
val->type = attr->type;
val->constant = NumToString(id - 1);
typefield->attributes.Add("id", val);
}
}
Expect(';');
}
void Parser::ParseAnyValue(Value &val, FieldDef *field) {
switch (val.type.base_type) {
case BASE_TYPE_UNION: {
assert(field);
if (!field_stack_.size() ||
field_stack_.back().second->value.type.base_type != BASE_TYPE_UTYPE)
Error("missing type field before this union value: " + field->name);
auto enum_idx = atot<unsigned char>(
field_stack_.back().first.constant.c_str());
auto enum_val = val.type.enum_def->ReverseLookup(enum_idx);
if (!enum_val) Error("illegal type id for: " + field->name);
val.constant = NumToString(ParseTable(*enum_val->struct_def));
break;
}
case BASE_TYPE_STRUCT:
val.constant = NumToString(ParseTable(*val.type.struct_def));
break;
case BASE_TYPE_STRING: {
auto s = attribute_;
Expect(kTokenStringConstant);
val.constant = NumToString(builder_.CreateString(s).o);
break;
}
case BASE_TYPE_VECTOR: {
Expect('[');
val.constant = NumToString(ParseVector(val.type.VectorType()));
break;
}
default:
ParseSingleValue(val);
break;
}
}
void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) {
auto off = atot<uoffset_t>(val.constant.c_str());
assert(struct_stack_.size() - off == struct_def.bytesize);
builder_.Align(struct_def.minalign);
builder_.PushBytes(&struct_stack_[off], struct_def.bytesize);
struct_stack_.resize(struct_stack_.size() - struct_def.bytesize);
builder_.AddStructOffset(val.offset, builder_.GetSize());
}
uoffset_t Parser::ParseTable(const StructDef &struct_def) {
Expect('{');
size_t fieldn = 0;
if (!IsNext('}')) for (;;) {
std::string name = attribute_;
if (!IsNext(kTokenStringConstant)) Expect(kTokenIdentifier);
auto field = struct_def.fields.Lookup(name);
if (!field) Error("unknown field: " + name);
if (struct_def.fixed && (fieldn >= struct_def.fields.vec.size()
|| struct_def.fields.vec[fieldn] != field)) {
Error("struct field appearing out of order: " + name);
}
Expect(':');
Value val = field->value;
ParseAnyValue(val, field);
field_stack_.push_back(std::make_pair(val, field));
fieldn++;
if (IsNext('}')) break;
Expect(',');
}
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
if (it->second->used)
Error("field set more than once: " + it->second->name);
it->second->used = true;
}
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
it->second->used = false;
}
if (struct_def.fixed && fieldn != struct_def.fields.vec.size())
Error("incomplete struct initialization: " + struct_def.name);
auto start = struct_def.fixed
? builder_.StartStruct(struct_def.minalign)
: builder_.StartTable();
for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1;
size;
size /= 2) {
// Go through elements in reverse, since we're building the data backwards.
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
auto &value = it->first;
auto field = it->second;
if (!struct_def.sortbysize || size == SizeOf(value.type.base_type)) {
switch (value.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
if (struct_def.fixed) { \
builder_.PushElement(atot<CTYPE>(value.constant.c_str())); \
} else { \
builder_.AddElement(value.offset, \
atot<CTYPE>( value.constant.c_str()), \
atot<CTYPE>(field->value.constant.c_str())); \
} \
break;
FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
if (IsStruct(field->value.type)) { \
SerializeStruct(*field->value.type.struct_def, value); \
} else { \
builder_.AddOffset(value.offset, \
atot<CTYPE>(value.constant.c_str())); \
} \
break;
FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
}
}
}
}
for (size_t i = 0; i < fieldn; i++) field_stack_.pop_back();
if (struct_def.fixed) {
builder_.ClearOffsets();
builder_.EndStruct();
// Temporarily store this struct in a side buffer, since this data has to
// be stored in-line later in the parent object.
auto off = struct_stack_.size();
struct_stack_.insert(struct_stack_.end(),
builder_.GetBufferPointer(),
builder_.GetBufferPointer() + struct_def.bytesize);
builder_.PopBytes(struct_def.bytesize);
return static_cast<uoffset_t>(off);
} else {
return builder_.EndTable(
start,
static_cast<voffset_t>(struct_def.fields.vec.size()));
}
}
uoffset_t Parser::ParseVector(const Type &type) {
int count = 0;
if (token_ != ']') for (;;) {
Value val;
val.type = type;
ParseAnyValue(val, NULL);
#ifdef WP8
field_stack_.push_back(std::make_pair(val, (FieldDef *)nullptr));
#else
field_stack_.push_back(std::make_pair(val, nullptr));
#endif
count++;
if (token_ == ']') break;
Expect(',');
}
Next();
builder_.StartVector(count * InlineSize(type) / InlineAlignment(type),
InlineAlignment(type));
for (int i = 0; i < count; i++) {
// start at the back, since we're building the data backwards.
auto &val = field_stack_.back().first;
switch (val.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
case BASE_TYPE_ ## ENUM: \
if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
else builder_.PushElement(atot<CTYPE>(val.constant.c_str())); \
break;
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
}
field_stack_.pop_back();
}
builder_.ClearOffsets();
return builder_.EndVector(count);
}
void Parser::ParseMetaData(Definition &def) {
if (IsNext('(')) {
for (;;) {
auto name = attribute_;
Expect(kTokenIdentifier);
auto e = new Value();
def.attributes.Add(name, e);
if (IsNext(':')) {
ParseSingleValue(*e);
}
if (IsNext(')')) break;
Expect(',');
}
}
}
bool Parser::TryTypedValue(int dtoken,
bool check,
Value &e,
BaseType req) {
bool match = dtoken == token_;
if (match) {
e.constant = attribute_;
if (!check) {
if (e.type.base_type == BASE_TYPE_NONE) {
e.type.base_type = req;
} else {
Error(std::string("type mismatch: expecting: ") +
kTypeNames[e.type.base_type] +
", found: " +
kTypeNames[req]);
}
}
Next();
}
return match;
}
int64_t Parser::ParseIntegerFromString(Type &type) {
int64_t result = 0;
// Parse one or more enum identifiers, separated by spaces.
const char *next = attribute_.c_str();
do {
const char *divider = strchr(next, ' ');
std::string word;
if (divider) {
word = std::string(next, divider);
next = divider + strspn(divider, " ");
} else {
word = next;
next += word.length();
}
if (type.enum_def) { // The field has an enum type
auto enum_val = type.enum_def->vals.Lookup(word);
if (!enum_val)
Error("unknown enum value: " + word +
", for enum: " + type.enum_def->name);
result |= enum_val->value;
} else { // No enum type, probably integral field.
if (!IsInteger(type.base_type))
Error("not a valid value for this field: " + word);
// TODO: could check if its a valid number constant here.
const char *dot = strchr(word.c_str(), '.');
if (!dot) Error("enum values need to be qualified by an enum type");
std::string enum_def_str(word.c_str(), dot);
std::string enum_val_str(dot + 1, word.c_str() + word.length());
auto enum_def = enums_.Lookup(enum_def_str);
if (!enum_def) Error("unknown enum: " + enum_def_str);
auto enum_val = enum_def->vals.Lookup(enum_val_str);
if (!enum_val) Error("unknown enum value: " + enum_val_str);
result |= enum_val->value;
}
} while(*next);
return result;
}
void Parser::ParseSingleValue(Value &e) {
// First check if this could be a string/identifier enum value:
if (e.type.base_type != BASE_TYPE_STRING &&
e.type.base_type != BASE_TYPE_NONE &&
(token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
e.constant = NumToString(ParseIntegerFromString(e.type));
Next();
} else if (TryTypedValue(kTokenIntegerConstant,
IsScalar(e.type.base_type),
e,
BASE_TYPE_INT) ||
TryTypedValue(kTokenFloatConstant,
IsFloat(e.type.base_type),
e,
BASE_TYPE_FLOAT) ||
TryTypedValue(kTokenStringConstant,
e.type.base_type == BASE_TYPE_STRING,
e,
BASE_TYPE_STRING)) {
} else {
Error("cannot parse value starting with: " + TokenToString(token_));
}
}
StructDef *Parser::LookupCreateStruct(const std::string &name) {
auto struct_def = structs_.Lookup(name);
if (!struct_def) {
// Rather than failing, we create a "pre declared" StructDef, due to
// circular references, and check for errors at the end of parsing.
struct_def = new StructDef();
structs_.Add(name, struct_def);
struct_def->name = name;
struct_def->predecl = true;
struct_def->defined_namespace = namespaces_.back();
}
return struct_def;
}
void Parser::ParseEnum(bool is_union) {
std::vector<std::string> dc = doc_comment_;
Next();
std::string name = attribute_;
Expect(kTokenIdentifier);
auto &enum_def = *new EnumDef();
enum_def.name = name;
enum_def.doc_comment = dc;
enum_def.is_union = is_union;
enum_def.defined_namespace = namespaces_.back();
if (enums_.Add(name, &enum_def)) Error("enum already exists: " + name);
if (is_union) {
enum_def.underlying_type.base_type = BASE_TYPE_UTYPE;
enum_def.underlying_type.enum_def = &enum_def;
} else {
if (proto_mode_) {
enum_def.underlying_type.base_type = BASE_TYPE_SHORT;
} else {
// Give specialized error message, since this type spec used to
// be optional in the first FlatBuffers release.
if (!IsNext(':')) Error("must specify the underlying integer type for this"
" enum (e.g. \': short\', which was the default).");
// Specify the integer type underlying this enum.
ParseType(enum_def.underlying_type);
if (!IsInteger(enum_def.underlying_type.base_type))
Error("underlying enum type must be integral");
}
// Make this type refer back to the enum it was derived from.
enum_def.underlying_type.enum_def = &enum_def;
}
ParseMetaData(enum_def);
Expect('{');
if (is_union) enum_def.vals.Add("NONE", new EnumVal("NONE", 0));
do {
name = attribute_;
dc = doc_comment_;
Expect(kTokenIdentifier);
auto prevsize = enum_def.vals.vec.size();
auto value = enum_def.vals.vec.size()
? enum_def.vals.vec.back()->value + 1
: 0;
auto &ev = *new EnumVal(name, value);
if (enum_def.vals.Add(name, &ev))
Error("enum value already exists: " + name);
ev.doc_comment = dc;
if (is_union) {
ev.struct_def = LookupCreateStruct(name);
}
if (IsNext('=')) {
ev.value = atoi(attribute_.c_str());
Expect(kTokenIntegerConstant);
if (prevsize && enum_def.vals.vec[prevsize - 1]->value >= ev.value)
Error("enum values must be specified in ascending order");
}
} while (IsNext(proto_mode_ ? ';' : ',') && token_ != '}');
Expect('}');
if (enum_def.attributes.Lookup("bit_flags")) {
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
if (static_cast<size_t>((*it)->value) >=
SizeOf(enum_def.underlying_type.base_type) * 8)
Error("bit flag out of range of underlying integral type");
(*it)->value = 1LL << (*it)->value;
}
}
}
StructDef &Parser::StartStruct() {
std::string name = attribute_;
Expect(kTokenIdentifier);
auto &struct_def = *LookupCreateStruct(name);
if (!struct_def.predecl) Error("datatype already exists: " + name);
struct_def.predecl = false;
struct_def.name = name;
// Move this struct to the back of the vector just in case it was predeclared,
// to preserve declaration order.
remove(structs_.vec.begin(), structs_.vec.end(), &struct_def);
structs_.vec.back() = &struct_def;
return struct_def;
}
void Parser::ParseDecl() {
std::vector<std::string> dc = doc_comment_;
bool fixed = IsNext(kTokenStruct);
if (!fixed) Expect(kTokenTable);
auto &struct_def = StartStruct();
struct_def.doc_comment = dc;
struct_def.fixed = fixed;
ParseMetaData(struct_def);
struct_def.sortbysize =
struct_def.attributes.Lookup("original_order") == nullptr && !fixed;
Expect('{');
while (token_ != '}') ParseField(struct_def);
auto force_align = struct_def.attributes.Lookup("force_align");
if (fixed && force_align) {
auto align = static_cast<size_t>(atoi(force_align->constant.c_str()));
if (force_align->type.base_type != BASE_TYPE_INT ||
align < struct_def.minalign ||
align > 256 ||
align & (align - 1))
Error("force_align must be a power of two integer ranging from the"
"struct\'s natural alignment to 256");
struct_def.minalign = align;
}
struct_def.PadLastField(struct_def.minalign);
// Check if this is a table that has manual id assignments
auto &fields = struct_def.fields.vec;
if (!struct_def.fixed && fields.size()) {
size_t num_id_fields = 0;
for (auto it = fields.begin(); it != fields.end(); ++it) {
if ((*it)->attributes.Lookup("id")) num_id_fields++;
}
// If any fields have ids..
if (num_id_fields) {
// Then all fields must have them.
if (num_id_fields != fields.size())
Error("either all fields or no fields must have an 'id' attribute");
// Simply sort by id, then the fields are the same as if no ids had
// been specified.
std::sort(fields.begin(), fields.end(),
[](const FieldDef *a, const FieldDef *b) -> bool {
auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str());
auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str());
return a_id < b_id;
});
// Verify we have a contiguous set, and reassign vtable offsets.
for (int i = 0; i < static_cast<int>(fields.size()); i++) {
if (i != atoi(fields[i]->attributes.Lookup("id")->constant.c_str()))
Error("field id\'s must be consecutive from 0, id " +
NumToString(i) + " missing or set twice");
fields[i]->value.offset = FieldIndexToOffset(static_cast<voffset_t>(i));
}
}
}
// Check that no identifiers clash with auto generated fields.
// This is not an ideal situation, but should occur very infrequently,
// and allows us to keep using very readable names for type & length fields
// without inducing compile errors.
auto CheckClash = [&fields, &struct_def](const char *suffix,
BaseType basetype) {
auto len = strlen(suffix);
for (auto it = fields.begin(); it != fields.end(); ++it) {
auto &name = (*it)->name;
if (name.length() > len &&
name.compare(name.length() - len, len, suffix) == 0 &&
(*it)->value.type.base_type != BASE_TYPE_UTYPE) {
auto field = struct_def.fields.Lookup(
name.substr(0, name.length() - len));
if (field && field->value.type.base_type == basetype)
Error("Field " + name +
" would clash with generated functions for field " +
field->name);
}
}
};
CheckClash("_type", BASE_TYPE_UNION);
CheckClash("Type", BASE_TYPE_UNION);
CheckClash("_length", BASE_TYPE_VECTOR);
CheckClash("Length", BASE_TYPE_VECTOR);
Expect('}');
}
bool Parser::SetRootType(const char *name) {
root_struct_def = structs_.Lookup(name);
return root_struct_def != nullptr;
}
void Parser::MarkGenerated() {
// Since the Parser object retains definitions across files, we must
// ensure we only output code for definitions once, in the file they are first
// declared. This function marks all existing definitions as having already
// been generated.
for (auto it = enums_.vec.begin();
it != enums_.vec.end(); ++it) {
(*it)->generated = true;
}
for (auto it = structs_.vec.begin();
it != structs_.vec.end(); ++it) {
(*it)->generated = true;
}
}
void Parser::ParseNamespace() {
Next();
auto ns = new Namespace();
namespaces_.push_back(ns);
for (;;) {
ns->components.push_back(attribute_);
Expect(kTokenIdentifier);
if (!IsNext('.')) break;
}
Expect(';');
}
// Best effort parsing of .proto declarations, with the aim to turn them
// in the closest corresponding FlatBuffer equivalent.
// We parse everything as identifiers instead of keywords, since we don't
// want protobuf keywords to become invalid identifiers in FlatBuffers.
void Parser::ParseProtoDecl() {
if (attribute_ == "package") {
// These are identical in syntax to FlatBuffer's namespace decl.
ParseNamespace();
} else if (attribute_ == "message") {
Next();
auto &struct_def = StartStruct();
Expect('{');
while (token_ != '}') {
// Parse the qualifier.
bool required = false;
bool repeated = false;
if (attribute_ == "optional") {
// This is the default.
} else if (attribute_ == "required") {
required = true;
} else if (attribute_ == "repeated") {
repeated = true;
} else {
Error("expecting optional/required/repeated, got: " + attribute_);
}
Type type = ParseTypeFromProtoType();
// Repeated elements get mapped to a vector.
if (repeated) {
type.element = type.base_type;
type.base_type = BASE_TYPE_VECTOR;
}
std::string name = attribute_;
Expect(kTokenIdentifier);
// Parse the field id. Since we're just translating schemas, not
// any kind of binary compatibility, we can safely ignore these, and
// assign our own.
Expect('=');
Expect(kTokenIntegerConstant);
auto &field = AddField(struct_def, name, type);
field.required = required;
// See if there's a default specified.
if (IsNext('[')) {
if (attribute_ != "default") Error("\'default\' expected");
Next();
Expect('=');
field.value.constant = attribute_;
Next();
Expect(']');
}
Expect(';');
}
Next();
} else if (attribute_ == "enum") {
// These are almost the same, just with different terminator:
ParseEnum(false);
} else if (attribute_ == "import") {
Next();
included_files_[attribute_] = true;
Expect(kTokenStringConstant);
Expect(';');
} else if (attribute_ == "option") { // Skip these.
Next();
Expect(kTokenIdentifier);
Expect('=');
Next(); // Any single token.
Expect(';');
} else {
Error("don\'t know how to parse .proto declaration starting with " +
attribute_);
}
}
// Parse a protobuf type, and map it to the corresponding FlatBuffer one.
Type Parser::ParseTypeFromProtoType() {
Expect(kTokenIdentifier);
struct type_lookup { const char *proto_type; BaseType fb_type; };
static type_lookup lookup[] = {
{ "float", BASE_TYPE_FLOAT }, { "double", BASE_TYPE_DOUBLE },
{ "int32", BASE_TYPE_INT }, { "int64", BASE_TYPE_LONG },
{ "uint32", BASE_TYPE_UINT }, { "uint64", BASE_TYPE_ULONG },
{ "sint32", BASE_TYPE_INT }, { "sint64", BASE_TYPE_LONG },
{ "fixed32", BASE_TYPE_UINT }, { "fixed64", BASE_TYPE_ULONG },
{ "sfixed32", BASE_TYPE_INT }, { "sfixed64", BASE_TYPE_LONG },
{ "bool", BASE_TYPE_BOOL },
{ "string", BASE_TYPE_STRING },
{ "bytes", BASE_TYPE_STRING },
{ nullptr, BASE_TYPE_NONE }
};
Type type;
for (auto tl = lookup; tl->proto_type; tl++) {
if (attribute_ == tl->proto_type) {
type.base_type = tl->fb_type;
Next();
return type;
}
}
ParseTypeIdent(type);
Expect(kTokenIdentifier);
return type;
}
bool Parser::Parse(const char *source, const char **include_paths,
const char *source_filename) {
if (source_filename) included_files_[source_filename] = true;
source_ = cursor_ = source;
line_ = 1;
error_.clear();
builder_.Clear();
try {
Next();
// Includes must come first:
while (IsNext(kTokenInclude)) {
auto name = attribute_;
Expect(kTokenStringConstant);
if (included_files_.find(name) == included_files_.end()) {
// We found an include file that we have not parsed yet.
// Load it and parse it.
std::string contents;
if (!include_paths) {
const char *current_directory[] = { "", nullptr };
include_paths = current_directory;
}
for (auto paths = include_paths; paths && *paths; paths++) {
auto filepath = flatbuffers::ConCatPathFileName(*paths, name);
if(LoadFile(filepath.c_str(), true, &contents)) break;
}
if (contents.empty())
Error("unable to load include file: " + name);
included_files_[name] = true;
if (!Parse(contents.c_str(), include_paths)) {
// Any errors, we're done.
return false;
}
// We do not want to output code for any included files:
MarkGenerated();
// This is the easiest way to continue this file after an include:
// instead of saving and restoring all the state, we simply start the
// file anew. This will cause it to encounter the same include statement
// again, but this time it will skip it, because it was entered into
// included_files_.
// This is recursive, but only go as deep as the number of include
// statements.
return Parse(source, include_paths, source_filename);
}
Expect(';');
}
// Now parse all other kinds of declarations:
while (token_ != kTokenEof) {
if (proto_mode_) {
ParseProtoDecl();
} else if (token_ == kTokenNameSpace) {
ParseNamespace();
} else if (token_ == '{') {
if (!root_struct_def) Error("no root type set to parse json with");
if (builder_.GetSize()) {
Error("cannot have more than one json object in a file");
}
builder_.Finish(Offset<Table>(ParseTable(*root_struct_def)),
file_identifier_.length() ? file_identifier_.c_str() : nullptr);
} else if (token_ == kTokenEnum) {
ParseEnum(false);
} else if (token_ == kTokenUnion) {
ParseEnum(true);
} else if (token_ == kTokenRootType) {
Next();
auto root_type = attribute_;
Expect(kTokenIdentifier);
if (!SetRootType(root_type.c_str()))
Error("unknown root type: " + root_type);
if (root_struct_def->fixed)
Error("root type must be a table");
Expect(';');
} else if (token_ == kTokenFileIdentifier) {
Next();
file_identifier_ = attribute_;
Expect(kTokenStringConstant);
if (file_identifier_.length() !=
FlatBufferBuilder::kFileIdentifierLength)
Error("file_identifier must be exactly " +
NumToString(FlatBufferBuilder::kFileIdentifierLength) +
" characters");
Expect(';');
} else if (token_ == kTokenFileExtension) {
Next();
file_extension_ = attribute_;
Expect(kTokenStringConstant);
Expect(';');
} else if(token_ == kTokenInclude) {
Error("includes must come before declarations");
} else {
ParseDecl();
}
}
for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
if ((*it)->predecl)
Error("type referenced but not defined: " + (*it)->name);
}
for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
auto &enum_def = **it;
if (enum_def.is_union) {
for (auto it2 = enum_def.vals.vec.begin();
it2 != enum_def.vals.vec.end();
++it2) {
auto &val = **it2;
if (val.struct_def && val.struct_def->fixed)
Error("only tables can be union elements: " + val.name);
}
}
}
} catch (const std::string &msg) {
error_ = source_filename ? AbsolutePath(source_filename) : "";
#ifdef _WIN32
error_ += "(" + NumToString(line_) + ")"; // MSVC alike
#else
if (source_filename) error_ += ":";
error_ += NumToString(line_) + ":0"; // gcc alike
#endif
error_ += ": error: " + msg;
return false;
}
assert(!struct_stack_.size());
return true;
}
} // namespace flatbuffers