idl_parser.cpp 39.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/*
 * Copyright 2014 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <algorithm>

#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"

namespace flatbuffers {

const char *const kTypeNames[] = {
  #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) IDLTYPE,
    FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
  #undef FLATBUFFERS_TD
  nullptr
};

const char kTypeSizes[] = {
  #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
      sizeof(CTYPE),
    FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
  #undef FLATBUFFERS_TD
};

static void Error(const std::string &msg) {
  throw msg;
}

// Ensure that integer values we parse fit inside the declared integer type.
static void CheckBitsFit(int64_t val, size_t bits) {
  auto mask = (1ll << bits) - 1;  // Bits we allow to be used.
  if (bits < 64 &&
      (val & ~mask) != 0 &&  // Positive or unsigned.
      (val |  mask) != -1)   // Negative.
    Error("constant does not fit in a " + NumToString(bits) + "-bit field");
}

// atot: templated version of atoi/atof: convert a string to an instance of T.
template<typename T> inline T atot(const char *s) {
  auto val = StringToInt(s);
  CheckBitsFit(val, sizeof(T) * 8);
  return (T)val;
}
template<> inline bool atot<bool>(const char *s) {
  return 0 != atoi(s);
}
template<> inline float atot<float>(const char *s) {
  return static_cast<float>(strtod(s, nullptr));
}
template<> inline double atot<double>(const char *s) {
  return strtod(s, nullptr);
}

template<> inline Offset<void> atot<Offset<void>>(const char *s) {
  return Offset<void>(atoi(s));
}

// Declare tokens we'll use. Single character tokens are represented by their
// ascii character code (e.g. '{'), others above 256.
#define FLATBUFFERS_GEN_TOKENS(TD) \
  TD(Eof, 256, "end of file") \
  TD(StringConstant, 257, "string constant") \
  TD(IntegerConstant, 258, "integer constant") \
  TD(FloatConstant, 259, "float constant") \
  TD(Identifier, 260, "identifier") \
  TD(Table, 261, "table") \
  TD(Struct, 262, "struct") \
  TD(Enum, 263, "enum") \
  TD(Union, 264, "union") \
  TD(NameSpace, 265, "namespace") \
  TD(RootType, 266, "root_type") \
  TD(FileIdentifier, 267, "file_identifier") \
  TD(FileExtension, 268, "file_extension") \
  TD(Include, 269, "include")
#ifdef __GNUC__
__extension__  // Stop GCC complaining about trailing comma with -Wpendantic.
#endif
enum {
  #define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE,
    FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
  #undef FLATBUFFERS_TOKEN
  #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
      kToken ## ENUM,
    FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
  #undef FLATBUFFERS_TD
};

static std::string TokenToString(int t) {
  static const char *tokens[] = {
    #define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING,
      FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
    #undef FLATBUFFERS_TOKEN
    #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) IDLTYPE,
      FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
    #undef FLATBUFFERS_TD
  };
  if (t < 256) {  // A single ascii char token.
    std::string s;
    s.append(1, static_cast<char>(t));
    return s;
  } else {       // Other tokens.
    return tokens[t - 256];
  }
}

// Parses exactly nibbles worth of hex digits into a number, or error.
int64_t Parser::ParseHexNum(int nibbles) {
  for (int i = 0; i < nibbles; i++)
    if (!isxdigit(cursor_[i]))
      Error("escape code must be followed by " + NumToString(nibbles) +
            " hex digits");
  auto val = StringToInt(cursor_, 16);
  cursor_ += nibbles;
  return val;
}

void Parser::Next() {
  doc_comment_.clear();
  bool seen_newline = false;
  for (;;) {
    char c = *cursor_++;
    token_ = c;
    switch (c) {
      case '\0': cursor_--; token_ = kTokenEof; return;
      case ' ': case '\r': case '\t': break;
      case '\n': line_++; seen_newline = true; break;
      case '{': case '}': case '(': case ')': case '[': case ']': return;
      case ',': case ':': case ';': case '=': return;
      case '.':
        if(!isdigit(*cursor_)) return;
        Error("floating point constant can\'t start with \".\"");
        break;
      case '\"':
        attribute_ = "";
        while (*cursor_ != '\"') {
          if (*cursor_ < ' ' && *cursor_ >= 0)
            Error("illegal character in string constant");
          if (*cursor_ == '\\') {
            cursor_++;
            switch (*cursor_) {
              case 'n':  attribute_ += '\n'; cursor_++; break;
              case 't':  attribute_ += '\t'; cursor_++; break;
              case 'r':  attribute_ += '\r'; cursor_++; break;
              case 'b':  attribute_ += '\b'; cursor_++; break;
              case 'f':  attribute_ += '\f'; cursor_++; break;
              case '\"': attribute_ += '\"'; cursor_++; break;
              case '\\': attribute_ += '\\'; cursor_++; break;
              case '/':  attribute_ += '/';  cursor_++; break;
              case 'x': {  // Not in the JSON standard
                cursor_++;
                attribute_ += static_cast<char>(ParseHexNum(2));
                break;
              }
              case 'u': {
                cursor_++;
                ToUTF8(static_cast<int>(ParseHexNum(4)), &attribute_);
                break;
              }
              default: Error("unknown escape code in string constant"); break;
            }
          } else { // printable chars + UTF-8 bytes
            attribute_ += *cursor_++;
          }
        }
        cursor_++;
        token_ = kTokenStringConstant;
        return;
      case '/':
        if (*cursor_ == '/') {
          const char *start = ++cursor_;
          while (*cursor_ && *cursor_ != '\n') cursor_++;
          if (*start == '/') {  // documentation comment
            if (!seen_newline)
              Error("a documentation comment should be on a line on its own");
            doc_comment_.push_back(std::string(start + 1, cursor_));
          }
          break;
        }
        // fall thru
      default:
        if (isalpha(static_cast<unsigned char>(c))) {
          // Collect all chars of an identifier:
          const char *start = cursor_ - 1;
          while (isalnum(static_cast<unsigned char>(*cursor_)) ||
                 *cursor_ == '_')
            cursor_++;
          attribute_.clear();
          attribute_.append(start, cursor_);
          // First, see if it is a type keyword from the table of types:
          #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
            if (attribute_ == IDLTYPE) { \
              token_ = kToken ## ENUM; \
              return; \
            }
            FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
          #undef FLATBUFFERS_TD
          // If it's a boolean constant keyword, turn those into integers,
          // which simplifies our logic downstream.
          if (attribute_ == "true" || attribute_ == "false") {
            attribute_ = NumToString(attribute_ == "true");
            token_ = kTokenIntegerConstant;
            return;
          }
          // Check for declaration keywords:
          if (attribute_ == "table")     { token_ = kTokenTable;     return; }
          if (attribute_ == "struct")    { token_ = kTokenStruct;    return; }
          if (attribute_ == "enum")      { token_ = kTokenEnum;      return; }
          if (attribute_ == "union")     { token_ = kTokenUnion;     return; }
          if (attribute_ == "namespace") { token_ = kTokenNameSpace; return; }
          if (attribute_ == "root_type") { token_ = kTokenRootType;  return; }
          if (attribute_ == "include")   { token_ = kTokenInclude;  return; }
          if (attribute_ == "file_identifier") {
            token_ = kTokenFileIdentifier;
            return;
          }
          if (attribute_ == "file_extension") {
            token_ = kTokenFileExtension;
            return;
          }
          // If not, it is a user-defined identifier:
          token_ = kTokenIdentifier;
          return;
        } else if (isdigit(static_cast<unsigned char>(c)) || c == '-') {
          const char *start = cursor_ - 1;
          while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
          if (*cursor_ == '.') {
            cursor_++;
            while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
            // See if this float has a scientific notation suffix. Both JSON
            // and C++ (through strtod() we use) have the same format:
            if (*cursor_ == 'e' || *cursor_ == 'E') {
              cursor_++;
              if (*cursor_ == '+' || *cursor_ == '-') cursor_++;
              while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
            }
            token_ = kTokenFloatConstant;
          } else {
            token_ = kTokenIntegerConstant;
          }
          attribute_.clear();
          attribute_.append(start, cursor_);
          return;
        }
        std::string ch;
        ch = c;
        if (c < ' ' || c > '~') ch = "code: " + NumToString(c);
        Error("illegal character: " + ch);
        break;
    }
  }
}

// Check if a given token is next, if so, consume it as well.
bool Parser::IsNext(int t) {
  bool isnext = t == token_;
  if (isnext) Next();
  return isnext;
}

// Expect a given token to be next, consume it, or error if not present.
void Parser::Expect(int t) {
  if (t != token_) {
    Error("expecting: " + TokenToString(t) + " instead got: " +
          TokenToString(token_));
  }
  Next();
}

void Parser::ParseTypeIdent(Type &type) {
  auto enum_def = enums_.Lookup(attribute_);
  if (enum_def) {
    type = enum_def->underlying_type;
    if (enum_def->is_union) type.base_type = BASE_TYPE_UNION;
  } else {
    type.base_type = BASE_TYPE_STRUCT;
    type.struct_def = LookupCreateStruct(attribute_);
  }
}

// Parse any IDL type.
void Parser::ParseType(Type &type) {
  if (token_ >= kTokenBOOL && token_ <= kTokenSTRING) {
    type.base_type = static_cast<BaseType>(token_ - kTokenNONE);
  } else {
    if (token_ == kTokenIdentifier) {
      ParseTypeIdent(type);
    } else if (token_ == '[') {
      Next();
      Type subtype;
      ParseType(subtype);
      if (subtype.base_type == BASE_TYPE_VECTOR) {
        // We could support this, but it will complicate things, and it's
        // easier to work around with a struct around the inner vector.
        Error("nested vector types not supported (wrap in table first).");
      }
      if (subtype.base_type == BASE_TYPE_UNION) {
        // We could support this if we stored a struct of 2 elements per
        // union element.
        Error("vector of union types not supported (wrap in table first).");
      }
      type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def);
      type.element = subtype.base_type;
      Expect(']');
      return;
    } else {
      Error("illegal type syntax");
    }
  }
  Next();
}

FieldDef &Parser::AddField(StructDef &struct_def,
                           const std::string &name,
                           const Type &type) {
  auto &field = *new FieldDef();
  field.value.offset =
    FieldIndexToOffset(static_cast<voffset_t>(struct_def.fields.vec.size()));
  field.name = name;
  field.value.type = type;
  if (struct_def.fixed) {  // statically compute the field offset
    auto size = InlineSize(type);
    auto alignment = InlineAlignment(type);
    // structs_ need to have a predictable format, so we need to align to
    // the largest scalar
    struct_def.minalign = std::max(struct_def.minalign, alignment);
    struct_def.PadLastField(alignment);
    field.value.offset = static_cast<voffset_t>(struct_def.bytesize);
    struct_def.bytesize += size;
  }
  if (struct_def.fields.Add(name, &field))
    Error("field already exists: " + name);
  return field;
}

void Parser::ParseField(StructDef &struct_def) {
  std::string name = attribute_;
  std::vector<std::string> dc = doc_comment_;
  Expect(kTokenIdentifier);
  Expect(':');
  Type type;
  ParseType(type);

  if (struct_def.fixed && !IsScalar(type.base_type) && !IsStruct(type))
    Error("structs_ may contain only scalar or struct fields");

  FieldDef *typefield = nullptr;
  if (type.base_type == BASE_TYPE_UNION) {
    // For union fields, add a second auto-generated field to hold the type,
    // with _type appended as the name.
    typefield = &AddField(struct_def, name + "_type",
                          type.enum_def->underlying_type);
  }

  auto &field = AddField(struct_def, name, type);

  if (token_ == '=') {
    Next();
    if (!IsScalar(type.base_type))
      Error("default values currently only supported for scalars");
    ParseSingleValue(field.value);
  }

  if (type.enum_def &&
      IsScalar(type.base_type) &&
      !struct_def.fixed &&
      !type.enum_def->attributes.Lookup("bit_flags") &&
      !type.enum_def->ReverseLookup(static_cast<int>(
                         StringToInt(field.value.constant.c_str()))))
    Error("enum " + type.enum_def->name +
          " does not have a declaration for this field\'s default of " +
          field.value.constant);

  field.doc_comment = dc;
  ParseMetaData(field);
  field.deprecated = field.attributes.Lookup("deprecated") != nullptr;
  if (field.deprecated && struct_def.fixed)
    Error("can't deprecate fields in a struct");
  field.required = field.attributes.Lookup("required") != nullptr;
  if (field.required && (struct_def.fixed ||
                         IsScalar(field.value.type.base_type)))
    Error("only non-scalar fields in tables may be 'required'");
  auto nested = field.attributes.Lookup("nested_flatbuffer");
  if (nested) {
    if (nested->type.base_type != BASE_TYPE_STRING)
      Error("nested_flatbuffer attribute must be a string (the root type)");
    if (field.value.type.base_type != BASE_TYPE_VECTOR ||
        field.value.type.element != BASE_TYPE_UCHAR)
      Error("nested_flatbuffer attribute may only apply to a vector of ubyte");
    // This will cause an error if the root type of the nested flatbuffer
    // wasn't defined elsewhere.
    LookupCreateStruct(nested->constant);
  }

  if (typefield) {
    // If this field is a union, and it has a manually assigned id,
    // the automatically added type field should have an id as well (of N - 1).
    auto attr = field.attributes.Lookup("id");
    if (attr) {
      auto id = atoi(attr->constant.c_str());
      auto val = new Value();
      val->type = attr->type;
      val->constant = NumToString(id - 1);
      typefield->attributes.Add("id", val);
    }
  }

  Expect(';');
}

void Parser::ParseAnyValue(Value &val, FieldDef *field) {
  switch (val.type.base_type) {
    case BASE_TYPE_UNION: {
      assert(field);
      if (!field_stack_.size() ||
          field_stack_.back().second->value.type.base_type != BASE_TYPE_UTYPE)
        Error("missing type field before this union value: " + field->name);
      auto enum_idx = atot<unsigned char>(
                                    field_stack_.back().first.constant.c_str());
      auto enum_val = val.type.enum_def->ReverseLookup(enum_idx);
      if (!enum_val) Error("illegal type id for: " + field->name);
      val.constant = NumToString(ParseTable(*enum_val->struct_def));
      break;
    }
    case BASE_TYPE_STRUCT:
      val.constant = NumToString(ParseTable(*val.type.struct_def));
      break;
    case BASE_TYPE_STRING: {
      auto s = attribute_;
      Expect(kTokenStringConstant);
      val.constant = NumToString(builder_.CreateString(s).o);
      break;
    }
    case BASE_TYPE_VECTOR: {
      Expect('[');
      val.constant = NumToString(ParseVector(val.type.VectorType()));
      break;
    }
    default:
      ParseSingleValue(val);
      break;
  }
}

void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) {
  auto off = atot<uoffset_t>(val.constant.c_str());
  assert(struct_stack_.size() - off == struct_def.bytesize);
  builder_.Align(struct_def.minalign);
  builder_.PushBytes(&struct_stack_[off], struct_def.bytesize);
  struct_stack_.resize(struct_stack_.size() - struct_def.bytesize);
  builder_.AddStructOffset(val.offset, builder_.GetSize());
}

uoffset_t Parser::ParseTable(const StructDef &struct_def) {
  Expect('{');
  size_t fieldn = 0;
  if (!IsNext('}')) for (;;) {
    std::string name = attribute_;
    if (!IsNext(kTokenStringConstant)) Expect(kTokenIdentifier);
    auto field = struct_def.fields.Lookup(name);
    if (!field) Error("unknown field: " + name);
    if (struct_def.fixed && (fieldn >= struct_def.fields.vec.size()
                            || struct_def.fields.vec[fieldn] != field)) {
       Error("struct field appearing out of order: " + name);
    }
    Expect(':');
    Value val = field->value;
    ParseAnyValue(val, field);
    field_stack_.push_back(std::make_pair(val, field));
    fieldn++;
    if (IsNext('}')) break;
    Expect(',');
  }
  for (auto it = field_stack_.rbegin();
           it != field_stack_.rbegin() + fieldn; ++it) {
    if (it->second->used)
      Error("field set more than once: " + it->second->name);
    it->second->used = true;
  }
  for (auto it = field_stack_.rbegin();
           it != field_stack_.rbegin() + fieldn; ++it) {
    it->second->used = false;
  }
  if (struct_def.fixed && fieldn != struct_def.fields.vec.size())
    Error("incomplete struct initialization: " + struct_def.name);
  auto start = struct_def.fixed
                 ? builder_.StartStruct(struct_def.minalign)
                 : builder_.StartTable();

  for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1;
       size;
       size /= 2) {
    // Go through elements in reverse, since we're building the data backwards.
    for (auto it = field_stack_.rbegin();
             it != field_stack_.rbegin() + fieldn; ++it) {
      auto &value = it->first;
      auto field = it->second;
      if (!struct_def.sortbysize || size == SizeOf(value.type.base_type)) {
        switch (value.type.base_type) {
          #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
            case BASE_TYPE_ ## ENUM: \
              builder_.Pad(field->padding); \
              if (struct_def.fixed) { \
                builder_.PushElement(atot<CTYPE>(value.constant.c_str())); \
              } else { \
                builder_.AddElement(value.offset, \
                             atot<CTYPE>(       value.constant.c_str()), \
                             atot<CTYPE>(field->value.constant.c_str())); \
              } \
              break;
            FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD);
          #undef FLATBUFFERS_TD
          #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
            case BASE_TYPE_ ## ENUM: \
              builder_.Pad(field->padding); \
              if (IsStruct(field->value.type)) { \
                SerializeStruct(*field->value.type.struct_def, value); \
              } else { \
                builder_.AddOffset(value.offset, \
                  atot<CTYPE>(value.constant.c_str())); \
              } \
              break;
            FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD);
          #undef FLATBUFFERS_TD
        }
      }
    }
  }
  for (size_t i = 0; i < fieldn; i++) field_stack_.pop_back();

  if (struct_def.fixed) {
    builder_.ClearOffsets();
    builder_.EndStruct();
    // Temporarily store this struct in a side buffer, since this data has to
    // be stored in-line later in the parent object.
    auto off = struct_stack_.size();
    struct_stack_.insert(struct_stack_.end(),
                         builder_.GetBufferPointer(),
                         builder_.GetBufferPointer() + struct_def.bytesize);
    builder_.PopBytes(struct_def.bytesize);
    return static_cast<uoffset_t>(off);
  } else {
    return builder_.EndTable(
      start,
      static_cast<voffset_t>(struct_def.fields.vec.size()));
  }
}

uoffset_t Parser::ParseVector(const Type &type) {
  int count = 0;
  if (token_ != ']') for (;;) {
    Value val;
    val.type = type;
    ParseAnyValue(val, NULL);
#ifdef WP8
    field_stack_.push_back(std::make_pair(val, (FieldDef *)nullptr));
#else
    field_stack_.push_back(std::make_pair(val, nullptr));
#endif
    count++;
    if (token_ == ']') break;
    Expect(',');
  }
  Next();

  builder_.StartVector(count * InlineSize(type) / InlineAlignment(type),
                       InlineAlignment(type));
  for (int i = 0; i < count; i++) {
    // start at the back, since we're building the data backwards.
    auto &val = field_stack_.back().first;
    switch (val.type.base_type) {
      #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE) \
        case BASE_TYPE_ ## ENUM: \
          if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
          else builder_.PushElement(atot<CTYPE>(val.constant.c_str())); \
          break;
        FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
      #undef FLATBUFFERS_TD
    }
    field_stack_.pop_back();
  }

  builder_.ClearOffsets();
  return builder_.EndVector(count);
}

void Parser::ParseMetaData(Definition &def) {
  if (IsNext('(')) {
    for (;;) {
      auto name = attribute_;
      Expect(kTokenIdentifier);
      auto e = new Value();
      def.attributes.Add(name, e);
      if (IsNext(':')) {
        ParseSingleValue(*e);
      }
      if (IsNext(')')) break;
      Expect(',');
    }
  }
}

bool Parser::TryTypedValue(int dtoken,
                           bool check,
                           Value &e,
                           BaseType req) {
  bool match = dtoken == token_;
  if (match) {
    e.constant = attribute_;
    if (!check) {
      if (e.type.base_type == BASE_TYPE_NONE) {
        e.type.base_type = req;
      } else {
        Error(std::string("type mismatch: expecting: ") +
              kTypeNames[e.type.base_type] +
              ", found: " +
              kTypeNames[req]);
      }
    }
    Next();
  }
  return match;
}

int64_t Parser::ParseIntegerFromString(Type &type) {
  int64_t result = 0;
  // Parse one or more enum identifiers, separated by spaces.
  const char *next = attribute_.c_str();
  do {
    const char *divider = strchr(next, ' ');
    std::string word;
    if (divider) {
      word = std::string(next, divider);
      next = divider + strspn(divider, " ");
    } else {
      word = next;
      next += word.length();
    }
    if (type.enum_def) {  // The field has an enum type
      auto enum_val = type.enum_def->vals.Lookup(word);
      if (!enum_val)
        Error("unknown enum value: " + word +
              ", for enum: " + type.enum_def->name);
      result |= enum_val->value;
    } else {  // No enum type, probably integral field.
      if (!IsInteger(type.base_type))
        Error("not a valid value for this field: " + word);
      // TODO: could check if its a valid number constant here.
      const char *dot = strchr(word.c_str(), '.');
      if (!dot) Error("enum values need to be qualified by an enum type");
      std::string enum_def_str(word.c_str(), dot);
      std::string enum_val_str(dot + 1, word.c_str() + word.length());
      auto enum_def = enums_.Lookup(enum_def_str);
      if (!enum_def) Error("unknown enum: " + enum_def_str);
      auto enum_val = enum_def->vals.Lookup(enum_val_str);
      if (!enum_val) Error("unknown enum value: " + enum_val_str);
      result |= enum_val->value;
    }
  } while(*next);
  return result;
}

void Parser::ParseSingleValue(Value &e) {
  // First check if this could be a string/identifier enum value:
  if (e.type.base_type != BASE_TYPE_STRING &&
      e.type.base_type != BASE_TYPE_NONE &&
      (token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
      e.constant = NumToString(ParseIntegerFromString(e.type));
      Next();
  } else if (TryTypedValue(kTokenIntegerConstant,
                    IsScalar(e.type.base_type),
                    e,
                    BASE_TYPE_INT) ||
      TryTypedValue(kTokenFloatConstant,
                    IsFloat(e.type.base_type),
                    e,
                    BASE_TYPE_FLOAT) ||
      TryTypedValue(kTokenStringConstant,
                    e.type.base_type == BASE_TYPE_STRING,
                    e,
                    BASE_TYPE_STRING)) {
  } else {
    Error("cannot parse value starting with: " + TokenToString(token_));
  }
}

StructDef *Parser::LookupCreateStruct(const std::string &name) {
  auto struct_def = structs_.Lookup(name);
  if (!struct_def) {
    // Rather than failing, we create a "pre declared" StructDef, due to
    // circular references, and check for errors at the end of parsing.
    struct_def = new StructDef();
    structs_.Add(name, struct_def);
    struct_def->name = name;
    struct_def->predecl = true;
    struct_def->defined_namespace = namespaces_.back();
  }
  return struct_def;
}

void Parser::ParseEnum(bool is_union) {
  std::vector<std::string> dc = doc_comment_;
  Next();
  std::string name = attribute_;
  Expect(kTokenIdentifier);
  auto &enum_def = *new EnumDef();
  enum_def.name = name;
  enum_def.doc_comment = dc;
  enum_def.is_union = is_union;
  enum_def.defined_namespace = namespaces_.back();
  if (enums_.Add(name, &enum_def)) Error("enum already exists: " + name);
  if (is_union) {
    enum_def.underlying_type.base_type = BASE_TYPE_UTYPE;
    enum_def.underlying_type.enum_def = &enum_def;
  } else {
    if (proto_mode_) {
      enum_def.underlying_type.base_type = BASE_TYPE_SHORT;
    } else {
      // Give specialized error message, since this type spec used to
      // be optional in the first FlatBuffers release.
      if (!IsNext(':')) Error("must specify the underlying integer type for this"
                              " enum (e.g. \': short\', which was the default).");
      // Specify the integer type underlying this enum.
      ParseType(enum_def.underlying_type);
      if (!IsInteger(enum_def.underlying_type.base_type))
        Error("underlying enum type must be integral");
    }
    // Make this type refer back to the enum it was derived from.
    enum_def.underlying_type.enum_def = &enum_def;
  }
  ParseMetaData(enum_def);
  Expect('{');
  if (is_union) enum_def.vals.Add("NONE", new EnumVal("NONE", 0));
  do {
    name = attribute_;
    dc = doc_comment_;
    Expect(kTokenIdentifier);
    auto prevsize = enum_def.vals.vec.size();
    auto value = enum_def.vals.vec.size()
      ? enum_def.vals.vec.back()->value + 1
      : 0;
    auto &ev = *new EnumVal(name, value);
    if (enum_def.vals.Add(name, &ev))
      Error("enum value already exists: " + name);
    ev.doc_comment = dc;
    if (is_union) {
      ev.struct_def = LookupCreateStruct(name);
    }
    if (IsNext('=')) {
      ev.value = atoi(attribute_.c_str());
      Expect(kTokenIntegerConstant);
      if (prevsize && enum_def.vals.vec[prevsize - 1]->value >= ev.value)
        Error("enum values must be specified in ascending order");
    }
  } while (IsNext(proto_mode_ ? ';' : ',') && token_ != '}');
  Expect('}');
  if (enum_def.attributes.Lookup("bit_flags")) {
    for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
         ++it) {
      if (static_cast<size_t>((*it)->value) >=
           SizeOf(enum_def.underlying_type.base_type) * 8)
        Error("bit flag out of range of underlying integral type");
      (*it)->value = 1LL << (*it)->value;
    }
  }
}

StructDef &Parser::StartStruct() {
  std::string name = attribute_;
  Expect(kTokenIdentifier);
  auto &struct_def = *LookupCreateStruct(name);
  if (!struct_def.predecl) Error("datatype already exists: " + name);
  struct_def.predecl = false;
  struct_def.name = name;
  // Move this struct to the back of the vector just in case it was predeclared,
  // to preserve declaration order.
  remove(structs_.vec.begin(), structs_.vec.end(), &struct_def);
  structs_.vec.back() = &struct_def;
  return struct_def;
}

void Parser::ParseDecl() {
  std::vector<std::string> dc = doc_comment_;
  bool fixed = IsNext(kTokenStruct);
  if (!fixed) Expect(kTokenTable);
  auto &struct_def = StartStruct();
  struct_def.doc_comment = dc;
  struct_def.fixed = fixed;
  ParseMetaData(struct_def);
  struct_def.sortbysize =
    struct_def.attributes.Lookup("original_order") == nullptr && !fixed;
  Expect('{');
  while (token_ != '}') ParseField(struct_def);
  auto force_align = struct_def.attributes.Lookup("force_align");
  if (fixed && force_align) {
    auto align = static_cast<size_t>(atoi(force_align->constant.c_str()));
    if (force_align->type.base_type != BASE_TYPE_INT ||
        align < struct_def.minalign ||
        align > 256 ||
        align & (align - 1))
      Error("force_align must be a power of two integer ranging from the"
            "struct\'s natural alignment to 256");
    struct_def.minalign = align;
  }
  struct_def.PadLastField(struct_def.minalign);
  // Check if this is a table that has manual id assignments
  auto &fields = struct_def.fields.vec;
  if (!struct_def.fixed && fields.size()) {
    size_t num_id_fields = 0;
    for (auto it = fields.begin(); it != fields.end(); ++it) {
      if ((*it)->attributes.Lookup("id")) num_id_fields++;
    }
    // If any fields have ids..
    if (num_id_fields) {
      // Then all fields must have them.
      if (num_id_fields != fields.size())
        Error("either all fields or no fields must have an 'id' attribute");
      // Simply sort by id, then the fields are the same as if no ids had
      // been specified.
      std::sort(fields.begin(), fields.end(),
        [](const FieldDef *a, const FieldDef *b) -> bool {
          auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str());
          auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str());
          return a_id < b_id;
      });
      // Verify we have a contiguous set, and reassign vtable offsets.
      for (int i = 0; i < static_cast<int>(fields.size()); i++) {
        if (i != atoi(fields[i]->attributes.Lookup("id")->constant.c_str()))
          Error("field id\'s must be consecutive from 0, id " +
                NumToString(i) + " missing or set twice");
        fields[i]->value.offset = FieldIndexToOffset(static_cast<voffset_t>(i));
      }
    }
  }
  // Check that no identifiers clash with auto generated fields.
  // This is not an ideal situation, but should occur very infrequently,
  // and allows us to keep using very readable names for type & length fields
  // without inducing compile errors.
  auto CheckClash = [&fields, &struct_def](const char *suffix,
                                           BaseType basetype) {
    auto len = strlen(suffix);
    for (auto it = fields.begin(); it != fields.end(); ++it) {
      auto &name = (*it)->name;
      if (name.length() > len &&
          name.compare(name.length() - len, len, suffix) == 0 &&
          (*it)->value.type.base_type != BASE_TYPE_UTYPE) {
        auto field = struct_def.fields.Lookup(
                       name.substr(0, name.length() - len));
        if (field && field->value.type.base_type == basetype)
          Error("Field " + name +
                " would clash with generated functions for field " +
                field->name);
      }
    }
  };
  CheckClash("_type", BASE_TYPE_UNION);
  CheckClash("Type", BASE_TYPE_UNION);
  CheckClash("_length", BASE_TYPE_VECTOR);
  CheckClash("Length", BASE_TYPE_VECTOR);
  Expect('}');
}

bool Parser::SetRootType(const char *name) {
  root_struct_def = structs_.Lookup(name);
  return root_struct_def != nullptr;
}

void Parser::MarkGenerated() {
  // Since the Parser object retains definitions across files, we must
  // ensure we only output code for definitions once, in the file they are first
  // declared. This function marks all existing definitions as having already
  // been generated.
  for (auto it = enums_.vec.begin();
           it != enums_.vec.end(); ++it) {
    (*it)->generated = true;
  }
  for (auto it = structs_.vec.begin();
           it != structs_.vec.end(); ++it) {
    (*it)->generated = true;
  }
}

void Parser::ParseNamespace() {
  Next();
  auto ns = new Namespace();
  namespaces_.push_back(ns);
  for (;;) {
    ns->components.push_back(attribute_);
    Expect(kTokenIdentifier);
    if (!IsNext('.')) break;
  }
  Expect(';');
}

// Best effort parsing of .proto declarations, with the aim to turn them
// in the closest corresponding FlatBuffer equivalent.
// We parse everything as identifiers instead of keywords, since we don't
// want protobuf keywords to become invalid identifiers in FlatBuffers.
void Parser::ParseProtoDecl() {
  if (attribute_ == "package") {
    // These are identical in syntax to FlatBuffer's namespace decl.
    ParseNamespace();
  } else if (attribute_ == "message") {
    Next();
    auto &struct_def = StartStruct();
    Expect('{');
    while (token_ != '}') {
      // Parse the qualifier.
      bool required = false;
      bool repeated = false;
      if (attribute_ == "optional") {
        // This is the default.
      } else if (attribute_ == "required") {
        required = true;
      } else if (attribute_ == "repeated") {
        repeated = true;
      } else {
        Error("expecting optional/required/repeated, got: " + attribute_);
      }
      Type type = ParseTypeFromProtoType();
      // Repeated elements get mapped to a vector.
      if (repeated) {
        type.element = type.base_type;
        type.base_type = BASE_TYPE_VECTOR;
      }
      std::string name = attribute_;
      Expect(kTokenIdentifier);
      // Parse the field id. Since we're just translating schemas, not
      // any kind of binary compatibility, we can safely ignore these, and
      // assign our own.
      Expect('=');
      Expect(kTokenIntegerConstant);
      auto &field = AddField(struct_def, name, type);
      field.required = required;
      // See if there's a default specified.
      if (IsNext('[')) {
        if (attribute_ != "default") Error("\'default\' expected");
        Next();
        Expect('=');
        field.value.constant = attribute_;
        Next();
        Expect(']');
      }
      Expect(';');
    }
    Next();
  } else if (attribute_ == "enum") {
    // These are almost the same, just with different terminator:
    ParseEnum(false);
  } else if (attribute_ == "import") {
    Next();
    included_files_[attribute_] = true;
    Expect(kTokenStringConstant);
    Expect(';');
  } else if (attribute_ == "option") {  // Skip these.
    Next();
    Expect(kTokenIdentifier);
    Expect('=');
    Next();  // Any single token.
    Expect(';');
  } else {
    Error("don\'t know how to parse .proto declaration starting with " +
          attribute_);
  }
}

// Parse a protobuf type, and map it to the corresponding FlatBuffer one.
Type Parser::ParseTypeFromProtoType() {
  Expect(kTokenIdentifier);
  struct type_lookup { const char *proto_type; BaseType fb_type; };
  static type_lookup lookup[] = {
    { "float", BASE_TYPE_FLOAT },  { "double", BASE_TYPE_DOUBLE },
    { "int32", BASE_TYPE_INT },    { "int64", BASE_TYPE_LONG },
    { "uint32", BASE_TYPE_UINT },  { "uint64", BASE_TYPE_ULONG },
    { "sint32", BASE_TYPE_INT },   { "sint64", BASE_TYPE_LONG },
    { "fixed32", BASE_TYPE_UINT }, { "fixed64", BASE_TYPE_ULONG },
    { "sfixed32", BASE_TYPE_INT }, { "sfixed64", BASE_TYPE_LONG },
    { "bool", BASE_TYPE_BOOL },
    { "string", BASE_TYPE_STRING },
    { "bytes", BASE_TYPE_STRING },
    { nullptr, BASE_TYPE_NONE }
  };
  Type type;
  for (auto tl = lookup; tl->proto_type; tl++) {
    if (attribute_ == tl->proto_type) {
      type.base_type = tl->fb_type;
      Next();
      return type;
    }
  }
  ParseTypeIdent(type);
  Expect(kTokenIdentifier);
  return type;
}

bool Parser::Parse(const char *source, const char **include_paths,
                   const char *source_filename) {
  if (source_filename) included_files_[source_filename] = true;
  source_ = cursor_ = source;
  line_ = 1;
  error_.clear();
  builder_.Clear();
  try {
    Next();
    // Includes must come first:
    while (IsNext(kTokenInclude)) {
      auto name = attribute_;
      Expect(kTokenStringConstant);
      if (included_files_.find(name) == included_files_.end()) {
        // We found an include file that we have not parsed yet.
        // Load it and parse it.
        std::string contents;
        if (!include_paths) {
          const char *current_directory[] = { "", nullptr };
          include_paths = current_directory;
        }
        for (auto paths = include_paths; paths && *paths; paths++) {
          auto filepath = flatbuffers::ConCatPathFileName(*paths, name);
          if(LoadFile(filepath.c_str(), true, &contents)) break;
        }
        if (contents.empty())
          Error("unable to load include file: " + name);
        included_files_[name] = true;
        if (!Parse(contents.c_str(), include_paths)) {
          // Any errors, we're done.
          return false;
        }
        // We do not want to output code for any included files:
        MarkGenerated();
        // This is the easiest way to continue this file after an include:
        // instead of saving and restoring all the state, we simply start the
        // file anew. This will cause it to encounter the same include statement
        // again, but this time it will skip it, because it was entered into
        // included_files_.
        // This is recursive, but only go as deep as the number of include
        // statements.
        return Parse(source, include_paths, source_filename);
      }
      Expect(';');
    }
    // Now parse all other kinds of declarations:
    while (token_ != kTokenEof) {
      if (proto_mode_) {
        ParseProtoDecl();
      } else if (token_ == kTokenNameSpace) {
        ParseNamespace();
      } else if (token_ == '{') {
        if (!root_struct_def) Error("no root type set to parse json with");
        if (builder_.GetSize()) {
          Error("cannot have more than one json object in a file");
        }
        builder_.Finish(Offset<Table>(ParseTable(*root_struct_def)),
          file_identifier_.length() ? file_identifier_.c_str() : nullptr);
      } else if (token_ == kTokenEnum) {
        ParseEnum(false);
      } else if (token_ == kTokenUnion) {
        ParseEnum(true);
      } else if (token_ == kTokenRootType) {
        Next();
        auto root_type = attribute_;
        Expect(kTokenIdentifier);
        if (!SetRootType(root_type.c_str()))
          Error("unknown root type: " + root_type);
        if (root_struct_def->fixed)
          Error("root type must be a table");
        Expect(';');
      } else if (token_ == kTokenFileIdentifier) {
        Next();
        file_identifier_ = attribute_;
        Expect(kTokenStringConstant);
        if (file_identifier_.length() !=
            FlatBufferBuilder::kFileIdentifierLength)
          Error("file_identifier must be exactly " +
                NumToString(FlatBufferBuilder::kFileIdentifierLength) +
                " characters");
        Expect(';');
      } else if (token_ == kTokenFileExtension) {
        Next();
        file_extension_ = attribute_;
        Expect(kTokenStringConstant);
        Expect(';');
      } else if(token_ == kTokenInclude) {
        Error("includes must come before declarations");
      } else {
        ParseDecl();
      }
    }
    for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
      if ((*it)->predecl)
        Error("type referenced but not defined: " + (*it)->name);
    }
    for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
      auto &enum_def = **it;
      if (enum_def.is_union) {
        for (auto it2 = enum_def.vals.vec.begin();
             it2 != enum_def.vals.vec.end();
             ++it2) {
          auto &val = **it2;
          if (val.struct_def && val.struct_def->fixed)
            Error("only tables can be union elements: " + val.name);
        }
      }
    }
  } catch (const std::string &msg) {
    error_ = source_filename ? AbsolutePath(source_filename) : "";
    #ifdef _WIN32
      error_ += "(" + NumToString(line_) + ")";  // MSVC alike
    #else
      if (source_filename) error_ += ":";
      error_ += NumToString(line_) + ":0";  // gcc alike
    #endif
    error_ += ": error: " + msg;
    return false;
  }
  assert(!struct_stack_.size());
  return true;
}

}  // namespace flatbuffers