DetourCommon.h 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#ifndef DETOURCOMMON_H
#define DETOURCOMMON_H

#include "DetourMath.h"

/**
@defgroup detour Detour

Members in this module are used to create, manipulate, and query navigation 
meshes.

@note This is a summary list of members.  Use the index or search 
feature to find minor members.
*/

/// @name General helper functions
/// @{

/// Used to ignore a function parameter.  VS complains about unused parameters
/// and this silences the warning.
///  @param [in] _ Unused parameter
template<class T> void dtIgnoreUnused(const T&) { }

/// Swaps the values of the two parameters.
///  @param[in,out]	a	Value A
///  @param[in,out]	b	Value B
template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }

/// Returns the minimum of two values.
///  @param[in]		a	Value A
///  @param[in]		b	Value B
///  @return The minimum of the two values.
template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }

/// Returns the maximum of two values.
///  @param[in]		a	Value A
///  @param[in]		b	Value B
///  @return The maximum of the two values.
template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }

/// Returns the absolute value.
///  @param[in]		a	The value.
///  @return The absolute value of the specified value.
template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }

/// Returns the square of the value.
///  @param[in]		a	The value.
///  @return The square of the value.
template<class T> inline T dtSqr(T a) { return a*a; }

/// Clamps the value to the specified range.
///  @param[in]		v	The value to clamp.
///  @param[in]		mn	The minimum permitted return value.
///  @param[in]		mx	The maximum permitted return value.
///  @return The value, clamped to the specified range.
template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }

/// @}
/// @name Vector helper functions.
/// @{

/// Derives the cross product of two vectors. (@p v1 x @p v2)
///  @param[out]	dest	The cross product. [(x, y, z)]
///  @param[in]		v1		A Vector [(x, y, z)]
///  @param[in]		v2		A vector [(x, y, z)]
inline void dtVcross(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
	dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
	dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; 
}

/// Derives the dot product of two vectors. (@p v1 . @p v2)
///  @param[in]		v1	A Vector [(x, y, z)]
///  @param[in]		v2	A vector [(x, y, z)]
/// @return The dot product.
inline float dtVdot(const float* v1, const float* v2)
{
	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to scale and add to @p v1. [(x, y, z)]
///  @param[in]		s		The amount to scale @p v2 by before adding to @p v1.
inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
{
	dest[0] = v1[0]+v2[0]*s;
	dest[1] = v1[1]+v2[1]*s;
	dest[2] = v1[2]+v2[2]*s;
}

/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
///  @param[out]	dest	The result vector. [(x, y, x)]
///  @param[in]		v1		The starting vector.
///  @param[in]		v2		The destination vector.
///	 @param[in]		t		The interpolation factor. [Limits: 0 <= value <= 1.0]
inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
{
	dest[0] = v1[0]+(v2[0]-v1[0])*t;
	dest[1] = v1[1]+(v2[1]-v1[1])*t;
	dest[2] = v1[2]+(v2[2]-v1[2])*t;
}

/// Performs a vector addition. (@p v1 + @p v2)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to add to @p v1. [(x, y, z)]
inline void dtVadd(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[0]+v2[0];
	dest[1] = v1[1]+v2[1];
	dest[2] = v1[2]+v2[2];
}

/// Performs a vector subtraction. (@p v1 - @p v2)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to subtract from @p v1. [(x, y, z)]
inline void dtVsub(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[0]-v2[0];
	dest[1] = v1[1]-v2[1];
	dest[2] = v1[2]-v2[2];
}

/// Scales the vector by the specified value. (@p v * @p t)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v		The vector to scale. [(x, y, z)]
///  @param[in]		t		The scaling factor.
inline void dtVscale(float* dest, const float* v, const float t)
{
	dest[0] = v[0]*t;
	dest[1] = v[1]*t;
	dest[2] = v[2]*t;
}

/// Selects the minimum value of each element from the specified vectors.
///  @param[in,out]	mn	A vector.  (Will be updated with the result.) [(x, y, z)]
///  @param[in]	v	A vector. [(x, y, z)]
inline void dtVmin(float* mn, const float* v)
{
	mn[0] = dtMin(mn[0], v[0]);
	mn[1] = dtMin(mn[1], v[1]);
	mn[2] = dtMin(mn[2], v[2]);
}

/// Selects the maximum value of each element from the specified vectors.
///  @param[in,out]	mx	A vector.  (Will be updated with the result.) [(x, y, z)]
///  @param[in]		v	A vector. [(x, y, z)]
inline void dtVmax(float* mx, const float* v)
{
	mx[0] = dtMax(mx[0], v[0]);
	mx[1] = dtMax(mx[1], v[1]);
	mx[2] = dtMax(mx[2], v[2]);
}

/// Sets the vector elements to the specified values.
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		x		The x-value of the vector.
///  @param[in]		y		The y-value of the vector.
///  @param[in]		z		The z-value of the vector.
inline void dtVset(float* dest, const float x, const float y, const float z)
{
	dest[0] = x; dest[1] = y; dest[2] = z;
}

/// Performs a vector copy.
///  @param[out]	dest	The result. [(x, y, z)]
///  @param[in]		a		The vector to copy. [(x, y, z)]
inline void dtVcopy(float* dest, const float* a)
{
	dest[0] = a[0];
	dest[1] = a[1];
	dest[2] = a[2];
}

/// Derives the scalar length of the vector.
///  @param[in]		v The vector. [(x, y, z)]
/// @return The scalar length of the vector.
inline float dtVlen(const float* v)
{
	return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}

/// Derives the square of the scalar length of the vector. (len * len)
///  @param[in]		v The vector. [(x, y, z)]
/// @return The square of the scalar length of the vector.
inline float dtVlenSqr(const float* v)
{
	return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}

/// Returns the distance between two points.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The distance between the two points.
inline float dtVdist(const float* v1, const float* v2)
{
	const float dx = v2[0] - v1[0];
	const float dy = v2[1] - v1[1];
	const float dz = v2[2] - v1[2];
	return dtMathSqrtf(dx*dx + dy*dy + dz*dz);
}

/// Returns the square of the distance between two points.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The square of the distance between the two points.
inline float dtVdistSqr(const float* v1, const float* v2)
{
	const float dx = v2[0] - v1[0];
	const float dy = v2[1] - v1[1];
	const float dz = v2[2] - v1[2];
	return dx*dx + dy*dy + dz*dz;
}

/// Derives the distance between the specified points on the xz-plane.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The distance between the point on the xz-plane.
///
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
inline float dtVdist2D(const float* v1, const float* v2)
{
	const float dx = v2[0] - v1[0];
	const float dz = v2[2] - v1[2];
	return dtMathSqrtf(dx*dx + dz*dz);
}

/// Derives the square of the distance between the specified points on the xz-plane.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The square of the distance between the point on the xz-plane.
inline float dtVdist2DSqr(const float* v1, const float* v2)
{
	const float dx = v2[0] - v1[0];
	const float dz = v2[2] - v1[2];
	return dx*dx + dz*dz;
}

/// Normalizes the vector.
///  @param[in,out]	v	The vector to normalize. [(x, y, z)]
inline void dtVnormalize(float* v)
{
	float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
	v[0] *= d;
	v[1] *= d;
	v[2] *= d;
}

/// Performs a 'sloppy' colocation check of the specified points.
///  @param[in]		p0	A point. [(x, y, z)]
///  @param[in]		p1	A point. [(x, y, z)]
/// @return True if the points are considered to be at the same location.
///
/// Basically, this function will return true if the specified points are 
/// close enough to eachother to be considered colocated.
inline bool dtVequal(const float* p0, const float* p1)
{
	static const float thr = dtSqr(1.0f/16384.0f);
	const float d = dtVdistSqr(p0, p1);
	return d < thr;
}

/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
///  @param[in]		u		A vector [(x, y, z)]
///  @param[in]		v		A vector [(x, y, z)]
/// @return The dot product on the xz-plane.
///
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
inline float dtVdot2D(const float* u, const float* v)
{
	return u[0]*v[0] + u[2]*v[2];
}

/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
///  @param[in]		u		The LHV vector [(x, y, z)]
///  @param[in]		v		The RHV vector [(x, y, z)]
/// @return The dot product on the xz-plane.
///
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
inline float dtVperp2D(const float* u, const float* v)
{
	return u[2]*v[0] - u[0]*v[2];
}

/// @}
/// @name Computational geometry helper functions.
/// @{

/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
///  @param[in]		a		Vertex A. [(x, y, z)]
///  @param[in]		b		Vertex B. [(x, y, z)]
///  @param[in]		c		Vertex C. [(x, y, z)]
/// @return The signed xz-plane area of the triangle.
inline float dtTriArea2D(const float* a, const float* b, const float* c)
{
	const float abx = b[0] - a[0];
	const float abz = b[2] - a[2];
	const float acx = c[0] - a[0];
	const float acz = c[2] - a[2];
	return acx*abz - abx*acz;
}

/// Determines if two axis-aligned bounding boxes overlap.
///  @param[in]		amin	Minimum bounds of box A. [(x, y, z)]
///  @param[in]		amax	Maximum bounds of box A. [(x, y, z)]
///  @param[in]		bmin	Minimum bounds of box B. [(x, y, z)]
///  @param[in]		bmax	Maximum bounds of box B. [(x, y, z)]
/// @return True if the two AABB's overlap.
/// @see dtOverlapBounds
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
								 const unsigned short bmin[3], const unsigned short bmax[3])
{
	bool overlap = true;
	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
	overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
	return overlap;
}

/// Determines if two axis-aligned bounding boxes overlap.
///  @param[in]		amin	Minimum bounds of box A. [(x, y, z)]
///  @param[in]		amax	Maximum bounds of box A. [(x, y, z)]
///  @param[in]		bmin	Minimum bounds of box B. [(x, y, z)]
///  @param[in]		bmax	Maximum bounds of box B. [(x, y, z)]
/// @return True if the two AABB's overlap.
/// @see dtOverlapQuantBounds
inline bool dtOverlapBounds(const float* amin, const float* amax,
							const float* bmin, const float* bmax)
{
	bool overlap = true;
	overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
	overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
	overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
	return overlap;
}

/// Derives the closest point on a triangle from the specified reference point.
///  @param[out]	closest	The closest point on the triangle.	
///  @param[in]		p		The reference point from which to test. [(x, y, z)]
///  @param[in]		a		Vertex A of triangle ABC. [(x, y, z)]
///  @param[in]		b		Vertex B of triangle ABC. [(x, y, z)]
///  @param[in]		c		Vertex C of triangle ABC. [(x, y, z)]
void dtClosestPtPointTriangle(float* closest, const float* p,
							  const float* a, const float* b, const float* c);

/// Derives the y-axis height of the closest point on the triangle from the specified reference point.
///  @param[in]		p		The reference point from which to test. [(x, y, z)]
///  @param[in]		a		Vertex A of triangle ABC. [(x, y, z)]
///  @param[in]		b		Vertex B of triangle ABC. [(x, y, z)]
///  @param[in]		c		Vertex C of triangle ABC. [(x, y, z)]
///  @param[out]	h		The resulting height.
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);

bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
							  const float* verts, int nverts,
							  float& tmin, float& tmax,
							  int& segMin, int& segMax);

bool dtIntersectSegSeg2D(const float* ap, const float* aq,
						 const float* bp, const float* bq,
						 float& s, float& t);

/// Determines if the specified point is inside the convex polygon on the xz-plane.
///  @param[in]		pt		The point to check. [(x, y, z)]
///  @param[in]		verts	The polygon vertices. [(x, y, z) * @p nverts]
///  @param[in]		nverts	The number of vertices. [Limit: >= 3]
/// @return True if the point is inside the polygon.
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);

bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
							float* ed, float* et);

float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);

/// Derives the centroid of a convex polygon.
///  @param[out]	tc		The centroid of the polgyon. [(x, y, z)]
///  @param[in]		idx		The polygon indices. [(vertIndex) * @p nidx]
///  @param[in]		nidx	The number of indices in the polygon. [Limit: >= 3]
///  @param[in]		verts	The polygon vertices. [(x, y, z) * vertCount]
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);

/// Determines if the two convex polygons overlap on the xz-plane.
///  @param[in]		polya		Polygon A vertices.	[(x, y, z) * @p npolya]
///  @param[in]		npolya		The number of vertices in polygon A.
///  @param[in]		polyb		Polygon B vertices.	[(x, y, z) * @p npolyb]
///  @param[in]		npolyb		The number of vertices in polygon B.
/// @return True if the two polygons overlap.
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
						 const float* polyb, const int npolyb);

/// @}
/// @name Miscellanious functions.
/// @{

inline unsigned int dtNextPow2(unsigned int v)
{
	v--;
	v |= v >> 1;
	v |= v >> 2;
	v |= v >> 4;
	v |= v >> 8;
	v |= v >> 16;
	v++;
	return v;
}

inline unsigned int dtIlog2(unsigned int v)
{
	unsigned int r;
	unsigned int shift;
	r = (v > 0xffff) << 4; v >>= r;
	shift = (v > 0xff) << 3; v >>= shift; r |= shift;
	shift = (v > 0xf) << 2; v >>= shift; r |= shift;
	shift = (v > 0x3) << 1; v >>= shift; r |= shift;
	r |= (v >> 1);
	return r;
}

inline int dtAlign4(int x) { return (x+3) & ~3; }

inline int dtOppositeTile(int side) { return (side+4) & 0x7; }

inline void dtSwapByte(unsigned char* a, unsigned char* b)
{
	unsigned char tmp = *a;
	*a = *b;
	*b = tmp;
}

inline void dtSwapEndian(unsigned short* v)
{
	unsigned char* x = (unsigned char*)v;
	dtSwapByte(x+0, x+1);
}

inline void dtSwapEndian(short* v)
{
	unsigned char* x = (unsigned char*)v;
	dtSwapByte(x+0, x+1);
}

inline void dtSwapEndian(unsigned int* v)
{
	unsigned char* x = (unsigned char*)v;
	dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
}

inline void dtSwapEndian(int* v)
{
	unsigned char* x = (unsigned char*)v;
	dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
}

inline void dtSwapEndian(float* v)
{
	unsigned char* x = (unsigned char*)v;
	dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
}

void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
							   const float s, const float t, float* out);

/// @}

#endif // DETOURCOMMON_H

///////////////////////////////////////////////////////////////////////////

// This section contains detailed documentation for members that don't have
// a source file. It reduces clutter in the main section of the header.

/**

@fn float dtTriArea2D(const float* a, const float* b, const float* c)
@par

The vertices are projected onto the xz-plane, so the y-values are ignored.

This is a low cost function than can be used for various purposes.  Its main purpose
is for point/line relationship testing.

In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
(On the xz-plane.)

When used for point/line relationship tests, AB usually represents a line against which
the C point is to be tested.  In this case:

A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
A negative value indicates that point C is to the right of lineAB, looking from A toward B.

When used for evaluating a triangle:

The absolute value of the return value is two times the area of the triangle when it is
projected onto the xz-plane.

A positive return value indicates:

<ul>
<li>The vertices are wrapped in the normal Detour wrap direction.</li>
<li>The triangle's 3D face normal is in the general up direction.</li>
</ul>

A negative return value indicates:

<ul>
<li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
<li>The triangle's 3D face normal is in the general down direction.</li>
</ul>

*/