Recast.h 51.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
 
#ifndef RECAST_H
#define RECAST_H

/// The value of PI used by Recast.
static const float RC_PI = 3.14159265f;

/// Recast log categories.
/// @see rcContext
enum rcLogCategory
{
	RC_LOG_PROGRESS = 1,	///< A progress log entry.
	RC_LOG_WARNING,			///< A warning log entry.
	RC_LOG_ERROR,			///< An error log entry.
};

/// Recast performance timer categories.
/// @see rcContext
enum rcTimerLabel
{
	/// The user defined total time of the build.
	RC_TIMER_TOTAL,
	/// A user defined build time.
	RC_TIMER_TEMP,
	/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
	RC_TIMER_RASTERIZE_TRIANGLES,
	/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
	RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
	/// The total time to build the contours. (See: #rcBuildContours)
	RC_TIMER_BUILD_CONTOURS,
	/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
	RC_TIMER_BUILD_CONTOURS_TRACE,
	/// The time to simplify the contours. (See: #rcBuildContours)
	RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
	/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
	RC_TIMER_FILTER_BORDER,
	/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
	RC_TIMER_FILTER_WALKABLE,
	/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
	RC_TIMER_MEDIAN_AREA,
	/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
	RC_TIMER_FILTER_LOW_OBSTACLES,
	/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
	RC_TIMER_BUILD_POLYMESH,
	/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
	RC_TIMER_MERGE_POLYMESH,
	/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
	RC_TIMER_ERODE_AREA,
	/// The time to mark a box area. (See: #rcMarkBoxArea)
	RC_TIMER_MARK_BOX_AREA,
	/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
	RC_TIMER_MARK_CYLINDER_AREA,
	/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
	RC_TIMER_MARK_CONVEXPOLY_AREA,
	/// The total time to build the distance field. (See: #rcBuildDistanceField)
	RC_TIMER_BUILD_DISTANCEFIELD,
	/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
	RC_TIMER_BUILD_DISTANCEFIELD_DIST,
	/// The time to blur the distance field. (See: #rcBuildDistanceField)
	RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
	/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
	RC_TIMER_BUILD_REGIONS,
	/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
	RC_TIMER_BUILD_REGIONS_WATERSHED,
	/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
	RC_TIMER_BUILD_REGIONS_EXPAND,
	/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
	RC_TIMER_BUILD_REGIONS_FLOOD,
	/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
	RC_TIMER_BUILD_REGIONS_FILTER,
	/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
	RC_TIMER_BUILD_LAYERS, 
	/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
	RC_TIMER_BUILD_POLYMESHDETAIL,
	/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
	RC_TIMER_MERGE_POLYMESHDETAIL,
	/// The maximum number of timers.  (Used for iterating timers.)
	RC_MAX_TIMERS
};

/// Provides an interface for optional logging and performance tracking of the Recast 
/// build process.
/// @ingroup recast
class rcContext
{
public:

	/// Contructor.
	///  @param[in]		state	TRUE if the logging and performance timers should be enabled.  [Default: true]
	inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
	virtual ~rcContext() {}

	/// Enables or disables logging.
	///  @param[in]		state	TRUE if logging should be enabled.
	inline void enableLog(bool state) { m_logEnabled = state; }

	/// Clears all log entries.
	inline void resetLog() { if (m_logEnabled) doResetLog(); }

	/// Logs a message.
	///  @param[in]		category	The category of the message.
	///  @param[in]		format		The message.
	void log(const rcLogCategory category, const char* format, ...);

	/// Enables or disables the performance timers.
	///  @param[in]		state	TRUE if timers should be enabled.
	inline void enableTimer(bool state) { m_timerEnabled = state; }

	/// Clears all peformance timers. (Resets all to unused.)
	inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }

	/// Starts the specified performance timer.
	///  @param	label	The category of timer.
	inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }

	/// Stops the specified performance timer.
	///  @param	label	The category of the timer.
	inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }

	/// Returns the total accumulated time of the specified performance timer.
	///  @param	label	The category of the timer.
	///  @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
	inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }

protected:

	/// Clears all log entries.
	virtual void doResetLog() {}

	/// Logs a message.
	///  @param[in]		category	The category of the message.
	///  @param[in]		msg			The formatted message.
	///  @param[in]		len			The length of the formatted message.
	virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {}

	/// Clears all timers. (Resets all to unused.)
	virtual void doResetTimers() {}

	/// Starts the specified performance timer.
	///  @param[in]		label	The category of timer.
	virtual void doStartTimer(const rcTimerLabel /*label*/) {}

	/// Stops the specified performance timer.
	///  @param[in]		label	The category of the timer.
	virtual void doStopTimer(const rcTimerLabel /*label*/) {}

	/// Returns the total accumulated time of the specified performance timer.
	///  @param[in]		label	The category of the timer.
	///  @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
	virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; }
	
	/// True if logging is enabled.
	bool m_logEnabled;

	/// True if the performance timers are enabled.
	bool m_timerEnabled;
};

/// Specifies a configuration to use when performing Recast builds.
/// @ingroup recast
struct rcConfig
{
	/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
	int width;

	/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
	int height;
	
	/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
	int tileSize;
	
	/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
	int borderSize;

	/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu] 
	float cs;

	/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
	float ch;

	/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
	float bmin[3]; 

	/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
	float bmax[3];

	/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees] 
	float walkableSlopeAngle;

	/// Minimum floor to 'ceiling' height that will still allow the floor area to 
	/// be considered walkable. [Limit: >= 3] [Units: vx] 
	int walkableHeight;
	
	/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx] 
	int walkableClimb;
	
	/// The distance to erode/shrink the walkable area of the heightfield away from 
	/// obstructions.  [Limit: >=0] [Units: vx] 
	int walkableRadius;
	
	/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx] 
	int maxEdgeLen;
	
	/// The maximum distance a simplfied contour's border edges should deviate 
	/// the original raw contour. [Limit: >=0] [Units: vx]
	float maxSimplificationError;
	
	/// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx] 
	int minRegionArea;
	
	/// Any regions with a span count smaller than this value will, if possible, 
	/// be merged with larger regions. [Limit: >=0] [Units: vx] 
	int mergeRegionArea;
	
	/// The maximum number of vertices allowed for polygons generated during the 
	/// contour to polygon conversion process. [Limit: >= 3] 
	int maxVertsPerPoly;
	
	/// Sets the sampling distance to use when generating the detail mesh.
	/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu] 
	float detailSampleDist;
	
	/// The maximum distance the detail mesh surface should deviate from heightfield
	/// data. (For height detail only.) [Limit: >=0] [Units: wu] 
	float detailSampleMaxError;
};

/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_HEIGHT_BITS = 13;
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_MAX_HEIGHT = (1<<RC_SPAN_HEIGHT_BITS)-1;

/// The number of spans allocated per span spool.
/// @see rcSpanPool
static const int RC_SPANS_PER_POOL = 2048;

/// Represents a span in a heightfield.
/// @see rcHeightfield
struct rcSpan
{
	unsigned int smin : 13;			///< The lower limit of the span. [Limit: < #smax]
	unsigned int smax : 13;			///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
	unsigned int area : 6;			///< The area id assigned to the span.
	rcSpan* next;					///< The next span higher up in column.
};

/// A memory pool used for quick allocation of spans within a heightfield.
/// @see rcHeightfield
struct rcSpanPool
{
	rcSpanPool* next;					///< The next span pool.
	rcSpan items[RC_SPANS_PER_POOL];	///< Array of spans in the pool.
};

/// A dynamic heightfield representing obstructed space.
/// @ingroup recast
struct rcHeightfield
{
	int width;			///< The width of the heightfield. (Along the x-axis in cell units.)
	int height;			///< The height of the heightfield. (Along the z-axis in cell units.)
	float bmin[3];  	///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];		///< The maximum bounds in world space. [(x, y, z)]
	float cs;			///< The size of each cell. (On the xz-plane.)
	float ch;			///< The height of each cell. (The minimum increment along the y-axis.)
	rcSpan** spans;		///< Heightfield of spans (width*height).
	rcSpanPool* pools;	///< Linked list of span pools.
	rcSpan* freelist;	///< The next free span.
};

/// Provides information on the content of a cell column in a compact heightfield. 
struct rcCompactCell
{
	unsigned int index : 24;	///< Index to the first span in the column.
	unsigned int count : 8;		///< Number of spans in the column.
};

/// Represents a span of unobstructed space within a compact heightfield.
struct rcCompactSpan
{
	unsigned short y;			///< The lower extent of the span. (Measured from the heightfield's base.)
	unsigned short reg;			///< The id of the region the span belongs to. (Or zero if not in a region.)
	unsigned int con : 24;		///< Packed neighbor connection data.
	unsigned int h : 8;			///< The height of the span.  (Measured from #y.)
};

/// A compact, static heightfield representing unobstructed space.
/// @ingroup recast
struct rcCompactHeightfield
{
	int width;					///< The width of the heightfield. (Along the x-axis in cell units.)
	int height;					///< The height of the heightfield. (Along the z-axis in cell units.)
	int spanCount;				///< The number of spans in the heightfield.
	int walkableHeight;			///< The walkable height used during the build of the field.  (See: rcConfig::walkableHeight)
	int walkableClimb;			///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
	int borderSize;				///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
	unsigned short maxDistance;	///< The maximum distance value of any span within the field. 
	unsigned short maxRegions;	///< The maximum region id of any span within the field. 
	float bmin[3];				///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];				///< The maximum bounds in world space. [(x, y, z)]
	float cs;					///< The size of each cell. (On the xz-plane.)
	float ch;					///< The height of each cell. (The minimum increment along the y-axis.)
	rcCompactCell* cells;		///< Array of cells. [Size: #width*#height]
	rcCompactSpan* spans;		///< Array of spans. [Size: #spanCount]
	unsigned short* dist;		///< Array containing border distance data. [Size: #spanCount]
	unsigned char* areas;		///< Array containing area id data. [Size: #spanCount]
};

/// Represents a heightfield layer within a layer set.
/// @see rcHeightfieldLayerSet
struct rcHeightfieldLayer
{
	float bmin[3];				///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];				///< The maximum bounds in world space. [(x, y, z)]
	float cs;					///< The size of each cell. (On the xz-plane.)
	float ch;					///< The height of each cell. (The minimum increment along the y-axis.)
	int width;					///< The width of the heightfield. (Along the x-axis in cell units.)
	int height;					///< The height of the heightfield. (Along the z-axis in cell units.)
	int minx;					///< The minimum x-bounds of usable data.
	int maxx;					///< The maximum x-bounds of usable data.
	int miny;					///< The minimum y-bounds of usable data. (Along the z-axis.)
	int maxy;					///< The maximum y-bounds of usable data. (Along the z-axis.)
	int hmin;					///< The minimum height bounds of usable data. (Along the y-axis.)
	int hmax;					///< The maximum height bounds of usable data. (Along the y-axis.)
	unsigned char* heights;		///< The heightfield. [Size: width * height]
	unsigned char* areas;		///< Area ids. [Size: Same as #heights]
	unsigned char* cons;		///< Packed neighbor connection information. [Size: Same as #heights]
};

/// Represents a set of heightfield layers.
/// @ingroup recast
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet 
struct rcHeightfieldLayerSet
{
	rcHeightfieldLayer* layers;			///< The layers in the set. [Size: #nlayers]
	int nlayers;						///< The number of layers in the set.
};

/// Represents a simple, non-overlapping contour in field space.
struct rcContour
{
	int* verts;			///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
	int nverts;			///< The number of vertices in the simplified contour. 
	int* rverts;		///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
	int nrverts;		///< The number of vertices in the raw contour. 
	unsigned short reg;	///< The region id of the contour.
	unsigned char area;	///< The area id of the contour.
};

/// Represents a group of related contours.
/// @ingroup recast
struct rcContourSet
{
	rcContour* conts;	///< An array of the contours in the set. [Size: #nconts]
	int nconts;			///< The number of contours in the set.
	float bmin[3];  	///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];		///< The maximum bounds in world space. [(x, y, z)]
	float cs;			///< The size of each cell. (On the xz-plane.)
	float ch;			///< The height of each cell. (The minimum increment along the y-axis.)
	int width;			///< The width of the set. (Along the x-axis in cell units.) 
	int height;			///< The height of the set. (Along the z-axis in cell units.) 
	int borderSize;		///< The AABB border size used to generate the source data from which the contours were derived.
};

/// Represents a polygon mesh suitable for use in building a navigation mesh. 
/// @ingroup recast
struct rcPolyMesh
{
	unsigned short* verts;	///< The mesh vertices. [Form: (x, y, z) * #nverts]
	unsigned short* polys;	///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
	unsigned short* regs;	///< The region id assigned to each polygon. [Length: #maxpolys]
	unsigned short* flags;	///< The user defined flags for each polygon. [Length: #maxpolys]
	unsigned char* areas;	///< The area id assigned to each polygon. [Length: #maxpolys]
	int nverts;				///< The number of vertices.
	int npolys;				///< The number of polygons.
	int maxpolys;			///< The number of allocated polygons.
	int nvp;				///< The maximum number of vertices per polygon.
	float bmin[3];			///< The minimum bounds in world space. [(x, y, z)]
	float bmax[3];			///< The maximum bounds in world space. [(x, y, z)]
	float cs;				///< The size of each cell. (On the xz-plane.)
	float ch;				///< The height of each cell. (The minimum increment along the y-axis.)
	int borderSize;			///< The AABB border size used to generate the source data from which the mesh was derived.
};

/// Contains triangle meshes that represent detailed height data associated 
/// with the polygons in its associated polygon mesh object.
/// @ingroup recast
struct rcPolyMeshDetail
{
	unsigned int* meshes;	///< The sub-mesh data. [Size: 4*#nmeshes] 
	float* verts;			///< The mesh vertices. [Size: 3*#nverts] 
	unsigned char* tris;	///< The mesh triangles. [Size: 4*#ntris] 
	int nmeshes;			///< The number of sub-meshes defined by #meshes.
	int nverts;				///< The number of vertices in #verts.
	int ntris;				///< The number of triangles in #tris.
};

/// @name Allocation Functions
/// Functions used to allocate and de-allocate Recast objects.
/// @see rcAllocSetCustom
/// @{

/// Allocates a heightfield object using the Recast allocator.
///  @return A heightfield that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcCreateHeightfield, rcFreeHeightField
rcHeightfield* rcAllocHeightfield();

/// Frees the specified heightfield object using the Recast allocator.
///  @param[in]		hf	A heightfield allocated using #rcAllocHeightfield
///  @ingroup recast
///  @see rcAllocHeightfield
void rcFreeHeightField(rcHeightfield* hf);

/// Allocates a compact heightfield object using the Recast allocator.
///  @return A compact heightfield that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
rcCompactHeightfield* rcAllocCompactHeightfield();

/// Frees the specified compact heightfield object using the Recast allocator.
///  @param[in]		chf		A compact heightfield allocated using #rcAllocCompactHeightfield
///  @ingroup recast
///  @see rcAllocCompactHeightfield
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);

/// Allocates a heightfield layer set using the Recast allocator.
///  @return A heightfield layer set that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();

/// Frees the specified heightfield layer set using the Recast allocator.
///  @param[in]		lset	A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
///  @ingroup recast
///  @see rcAllocHeightfieldLayerSet
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);

/// Allocates a contour set object using the Recast allocator.
///  @return A contour set that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildContours, rcFreeContourSet
rcContourSet* rcAllocContourSet();

/// Frees the specified contour set using the Recast allocator.
///  @param[in]		cset	A contour set allocated using #rcAllocContourSet
///  @ingroup recast
///  @see rcAllocContourSet
void rcFreeContourSet(rcContourSet* cset);

/// Allocates a polygon mesh object using the Recast allocator.
///  @return A polygon mesh that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildPolyMesh, rcFreePolyMesh
rcPolyMesh* rcAllocPolyMesh();

/// Frees the specified polygon mesh using the Recast allocator.
///  @param[in]		pmesh	A polygon mesh allocated using #rcAllocPolyMesh
///  @ingroup recast
///  @see rcAllocPolyMesh
void rcFreePolyMesh(rcPolyMesh* pmesh);

/// Allocates a detail mesh object using the Recast allocator.
///  @return A detail mesh that is ready for initialization, or null on failure.
///  @ingroup recast
///  @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
rcPolyMeshDetail* rcAllocPolyMeshDetail();

/// Frees the specified detail mesh using the Recast allocator.
///  @param[in]		dmesh	A detail mesh allocated using #rcAllocPolyMeshDetail
///  @ingroup recast
///  @see rcAllocPolyMeshDetail
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);

/// @}

/// Heighfield border flag.
/// If a heightfield region ID has this bit set, then the region is a border 
/// region and its spans are considered unwalkable.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg
static const unsigned short RC_BORDER_REG = 0x8000;

/// Border vertex flag.
/// If a region ID has this bit set, then the associated element lies on
/// a tile border. If a contour vertex's region ID has this bit set, the 
/// vertex will later be removed in order to match the segments and vertices 
/// at tile boundaries.
/// (Used during the build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_BORDER_VERTEX = 0x10000;

/// Area border flag.
/// If a region ID has this bit set, then the associated element lies on
/// the border of an area.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_AREA_BORDER = 0x20000;

/// Contour build flags.
/// @see rcBuildContours
enum rcBuildContoursFlags
{
	RC_CONTOUR_TESS_WALL_EDGES = 0x01,	///< Tessellate solid (impassable) edges during contour simplification.
	RC_CONTOUR_TESS_AREA_EDGES = 0x02,	///< Tessellate edges between areas during contour simplification.
};

/// Applied to the region id field of contour vertices in order to extract the region id.
/// The region id field of a vertex may have several flags applied to it.  So the
/// fields value can't be used directly.
/// @see rcContour::verts, rcContour::rverts
static const int RC_CONTOUR_REG_MASK = 0xffff;

/// An value which indicates an invalid index within a mesh.
/// @note This does not necessarily indicate an error.
/// @see rcPolyMesh::polys
static const unsigned short RC_MESH_NULL_IDX = 0xffff;

/// Represents the null area.
/// When a data element is given this value it is considered to no longer be 
/// assigned to a usable area.  (E.g. It is unwalkable.)
static const unsigned char RC_NULL_AREA = 0;

/// The default area id used to indicate a walkable polygon. 
/// This is also the maximum allowed area id, and the only non-null area id 
/// recognized by some steps in the build process. 
static const unsigned char RC_WALKABLE_AREA = 63;

/// The value returned by #rcGetCon if the specified direction is not connected
/// to another span. (Has no neighbor.)
static const int RC_NOT_CONNECTED = 0x3f;

/// @name General helper functions
/// @{

/// Used to ignore a function parameter.  VS complains about unused parameters
/// and this silences the warning.
///  @param [in] _ Unused parameter
template<class T> void rcIgnoreUnused(const T&) { }

/// Swaps the values of the two parameters.
///  @param[in,out]	a	Value A
///  @param[in,out]	b	Value B
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }

/// Returns the minimum of two values.
///  @param[in]		a	Value A
///  @param[in]		b	Value B
///  @return The minimum of the two values.
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }

/// Returns the maximum of two values.
///  @param[in]		a	Value A
///  @param[in]		b	Value B
///  @return The maximum of the two values.
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }

/// Returns the absolute value.
///  @param[in]		a	The value.
///  @return The absolute value of the specified value.
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }

/// Returns the square of the value.
///  @param[in]		a	The value.
///  @return The square of the value.
template<class T> inline T rcSqr(T a) { return a*a; }

/// Clamps the value to the specified range.
///  @param[in]		v	The value to clamp.
///  @param[in]		mn	The minimum permitted return value.
///  @param[in]		mx	The maximum permitted return value.
///  @return The value, clamped to the specified range.
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }

/// Returns the square root of the value.
///  @param[in]		x	The value.
///  @return The square root of the vlaue.
float rcSqrt(float x);

/// @}
/// @name Vector helper functions.
/// @{

/// Derives the cross product of two vectors. (@p v1 x @p v2)
///  @param[out]	dest	The cross product. [(x, y, z)]
///  @param[in]		v1		A Vector [(x, y, z)]
///  @param[in]		v2		A vector [(x, y, z)]
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
	dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
	dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}

/// Derives the dot product of two vectors. (@p v1 . @p v2)
///  @param[in]		v1	A Vector [(x, y, z)]
///  @param[in]		v2	A vector [(x, y, z)]
/// @return The dot product.
inline float rcVdot(const float* v1, const float* v2)
{
	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to scale and add to @p v1. [(x, y, z)]
///  @param[in]		s		The amount to scale @p v2 by before adding to @p v1.
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
	dest[0] = v1[0]+v2[0]*s;
	dest[1] = v1[1]+v2[1]*s;
	dest[2] = v1[2]+v2[2]*s;
}

/// Performs a vector addition. (@p v1 + @p v2)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to add to @p v1. [(x, y, z)]
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[0]+v2[0];
	dest[1] = v1[1]+v2[1];
	dest[2] = v1[2]+v2[2];
}

/// Performs a vector subtraction. (@p v1 - @p v2)
///  @param[out]	dest	The result vector. [(x, y, z)]
///  @param[in]		v1		The base vector. [(x, y, z)]
///  @param[in]		v2		The vector to subtract from @p v1. [(x, y, z)]
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
	dest[0] = v1[0]-v2[0];
	dest[1] = v1[1]-v2[1];
	dest[2] = v1[2]-v2[2];
}

/// Selects the minimum value of each element from the specified vectors.
///  @param[in,out]	mn	A vector.  (Will be updated with the result.) [(x, y, z)]
///  @param[in]		v	A vector. [(x, y, z)]
inline void rcVmin(float* mn, const float* v)
{
	mn[0] = rcMin(mn[0], v[0]);
	mn[1] = rcMin(mn[1], v[1]);
	mn[2] = rcMin(mn[2], v[2]);
}

/// Selects the maximum value of each element from the specified vectors.
///  @param[in,out]	mx	A vector.  (Will be updated with the result.) [(x, y, z)]
///  @param[in]		v	A vector. [(x, y, z)]
inline void rcVmax(float* mx, const float* v)
{
	mx[0] = rcMax(mx[0], v[0]);
	mx[1] = rcMax(mx[1], v[1]);
	mx[2] = rcMax(mx[2], v[2]);
}

/// Performs a vector copy.
///  @param[out]	dest	The result. [(x, y, z)]
///  @param[in]		v		The vector to copy. [(x, y, z)]
inline void rcVcopy(float* dest, const float* v)
{
	dest[0] = v[0];
	dest[1] = v[1];
	dest[2] = v[2];
}

/// Returns the distance between two points.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The distance between the two points.
inline float rcVdist(const float* v1, const float* v2)
{
	float dx = v2[0] - v1[0];
	float dy = v2[1] - v1[1];
	float dz = v2[2] - v1[2];
	return rcSqrt(dx*dx + dy*dy + dz*dz);
}

/// Returns the square of the distance between two points.
///  @param[in]		v1	A point. [(x, y, z)]
///  @param[in]		v2	A point. [(x, y, z)]
/// @return The square of the distance between the two points.
inline float rcVdistSqr(const float* v1, const float* v2)
{
	float dx = v2[0] - v1[0];
	float dy = v2[1] - v1[1];
	float dz = v2[2] - v1[2];
	return dx*dx + dy*dy + dz*dz;
}

/// Normalizes the vector.
///  @param[in,out]	v	The vector to normalize. [(x, y, z)]
inline void rcVnormalize(float* v)
{
	float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
	v[0] *= d;
	v[1] *= d;
	v[2] *= d;
}

/// @}
/// @name Heightfield Functions
/// @see rcHeightfield
/// @{

/// Calculates the bounding box of an array of vertices.
///  @ingroup recast
///  @param[in]		verts	An array of vertices. [(x, y, z) * @p nv]
///  @param[in]		nv		The number of vertices in the @p verts array.
///  @param[out]	bmin	The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
///  @param[out]	bmax	The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);

/// Calculates the grid size based on the bounding box and grid cell size.
///  @ingroup recast
///  @param[in]		bmin	The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
///  @param[in]		bmax	The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
///  @param[in]		cs		The xz-plane cell size. [Limit: > 0] [Units: wu]
///  @param[out]	w		The width along the x-axis. [Limit: >= 0] [Units: vx]
///  @param[out]	h		The height along the z-axis. [Limit: >= 0] [Units: vx]
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);

/// Initializes a new heightfield.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in,out]	hf		The allocated heightfield to initialize.
///  @param[in]		width	The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
///  @param[in]		height	The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
///  @param[in]		bmin	The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
///  @param[in]		bmax	The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
///  @param[in]		cs		The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
///  @param[in]		ch		The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
						 const float* bmin, const float* bmax,
						 float cs, float ch);

/// Sets the area id of all triangles with a slope below the specified value
/// to #RC_WALKABLE_AREA.
///  @ingroup recast
///  @param[in,out]	ctx					The build context to use during the operation.
///  @param[in]		walkableSlopeAngle	The maximum slope that is considered walkable.
///  									[Limits: 0 <= value < 90] [Units: Degrees]
///  @param[in]		verts				The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv					The number of vertices.
///  @param[in]		tris				The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		nt					The number of triangles.
///  @param[out]	areas				The triangle area ids. [Length: >= @p nt]
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
							 const int* tris, int nt, unsigned char* areas); 

/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
///  @ingroup recast
///  @param[in,out]	ctx					The build context to use during the operation.
///  @param[in]		walkableSlopeAngle	The maximum slope that is considered walkable.
///  									[Limits: 0 <= value < 90] [Units: Degrees]
///  @param[in]		verts				The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv					The number of vertices.
///  @param[in]		tris				The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		nt					The number of triangles.
///  @param[out]	areas				The triangle area ids. [Length: >= @p nt]
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
								const int* tris, int nt, unsigned char* areas); 

/// Adds a span to the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	hf				An initialized heightfield.
///  @param[in]		x				The width index where the span is to be added.
///  								[Limits: 0 <= value < rcHeightfield::width]
///  @param[in]		y				The height index where the span is to be added.
///  								[Limits: 0 <= value < rcHeightfield::height]
///  @param[in]		smin			The minimum height of the span. [Limit: < @p smax] [Units: vx]
///  @param[in]		smax			The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
///  @param[in]		area			The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
///  @param[in]		flagMergeThr	The merge theshold. [Limit: >= 0] [Units: vx]
void rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
			   const unsigned short smin, const unsigned short smax,
			   const unsigned char area, const int flagMergeThr);

/// Rasterizes a triangle into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		v0				Triangle vertex 0 [(x, y, z)]
///  @param[in]		v1				Triangle vertex 1 [(x, y, z)]
///  @param[in]		v2				Triangle vertex 2 [(x, y, z)]
///  @param[in]		area			The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	solid			An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag.
///  								[Limit: >= 0] [Units: vx]
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
						 const unsigned char area, rcHeightfield& solid,
						 const int flagMergeThr = 1);

/// Rasterizes an indexed triangle mesh into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		verts			The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv				The number of vertices.
///  @param[in]		tris			The triangle indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		areas			The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
///  @param[in]		nt				The number of triangles.
///  @param[in,out]	solid			An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
///  								[Limit: >= 0] [Units: vx]
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
						  const int* tris, const unsigned char* areas, const int nt,
						  rcHeightfield& solid, const int flagMergeThr = 1);

/// Rasterizes an indexed triangle mesh into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx			The build context to use during the operation.
///  @param[in]		verts		The vertices. [(x, y, z) * @p nv]
///  @param[in]		nv			The number of vertices.
///  @param[in]		tris		The triangle indices. [(vertA, vertB, vertC) * @p nt]
///  @param[in]		areas		The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
///  @param[in]		nt			The number of triangles.
///  @param[in,out]	solid		An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
///  							[Limit: >= 0] [Units: vx]
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
						  const unsigned short* tris, const unsigned char* areas, const int nt,
						  rcHeightfield& solid, const int flagMergeThr = 1);

/// Rasterizes triangles into the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		verts			The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
///  @param[in]		areas			The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
///  @param[in]		nt				The number of triangles.
///  @param[in,out]	solid			An initialized heightfield.
///  @param[in]		flagMergeThr	The distance where the walkable flag is favored over the non-walkable flag. 
///  								[Limit: >= 0] [Units: vx]
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
						  rcHeightfield& solid, const int flagMergeThr = 1);

/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neihbor. 
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
///  								[Limit: >=0] [Units: vx]
///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);

/// Marks spans that are ledges as not-walkable. 
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area to 
///  								be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
///  								[Limit: >=0] [Units: vx]
///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
						const int walkableClimb, rcHeightfield& solid);

/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height. 
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area to 
///  								be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[in,out]	solid			A fully built heightfield.  (All spans have been added.)
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);

/// Returns the number of spans contained in the specified heightfield.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		hf		An initialized heightfield.
///  @returns The number of spans in the heightfield.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);

/// @}
/// @name Compact Heightfield Functions
/// @see rcCompactHeightfield
/// @{

/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area 
///  								to be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[in]		walkableClimb	Maximum ledge height that is considered to still be traversable. 
///  								[Limit: >=0] [Units: vx]
///  @param[in]		hf				The heightfield to be compacted.
///  @param[out]	chf				The resulting compact heightfield. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
							   rcHeightfield& hf, rcCompactHeightfield& chf);

/// Erodes the walkable area within the heightfield by the specified radius. 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		radius	The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
///  @param[in,out]	chf		The populated compact heightfield to erode.
///  @returns True if the operation completed successfully.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);

/// Applies a median filter to walkable area types (based on area id), removing noise.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in,out]	chf		A populated compact heightfield.
///  @returns True if the operation completed successfully.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);

/// Applies an area id to all spans within the specified bounding box. (AABB) 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		bmin	The minimum of the bounding box. [(x, y, z)]
///  @param[in]		bmax	The maximum of the bounding box. [(x, y, z)]
///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	chf		A populated compact heightfield.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
				   rcCompactHeightfield& chf);

/// Applies the area id to the all spans within the specified convex polygon. 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		verts	The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
///  @param[in]		nverts	The number of vertices in the polygon.
///  @param[in]		hmin	The height of the base of the polygon.
///  @param[in]		hmax	The height of the top of the polygon.
///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	chf		A populated compact heightfield.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
						  const float hmin, const float hmax, unsigned char areaId,
						  rcCompactHeightfield& chf);

/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
///  @ingroup recast
///  @param[in]		verts		The vertices of the polygon [Form: (x, y, z) * @p nverts]
///  @param[in]		nverts		The number of vertices in the polygon.
///  @param[out]	outVerts	The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
///  @param[in]		maxOutVerts	The max number of vertices that can be stored to @p outVerts.
///  @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
				 float* outVerts, const int maxOutVerts);

/// Applies the area id to all spans within the specified cylinder.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		pos		The center of the base of the cylinder. [Form: (x, y, z)] 
///  @param[in]		r		The radius of the cylinder.
///  @param[in]		h		The height of the cylinder.
///  @param[in]		areaId	The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
///  @param[in,out]	chf	A populated compact heightfield.
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
						const float r, const float h, unsigned char areaId,
						rcCompactHeightfield& chf);

/// Builds the distance field for the specified compact heightfield. 
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in,out]	chf		A populated compact heightfield.
///  @returns True if the operation completed successfully.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);

/// Builds region data for the heightfield using watershed partitioning.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	chf				A populated compact heightfield.
///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
///  								[Limit: >=0] [Units: vx]
///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
///  								[Limit: >=0] [Units: vx].
///  @param[in]		mergeRegionArea		Any regions with a span count smaller than this value will, if possible,
///  								be merged with larger regions. [Limit: >=0] [Units: vx] 
///  @returns True if the operation completed successfully.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
					const int borderSize, const int minRegionArea, const int mergeRegionArea);

/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	chf				A populated compact heightfield.
///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
///  								[Limit: >=0] [Units: vx]
///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
///  								[Limit: >=0] [Units: vx].
///  @returns True if the operation completed successfully.
bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
						 const int borderSize, const int minRegionArea);

/// Builds region data for the heightfield using simple monotone partitioning.
///  @ingroup recast 
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in,out]	chf				A populated compact heightfield.
///  @param[in]		borderSize		The size of the non-navigable border around the heightfield.
///  								[Limit: >=0] [Units: vx]
///  @param[in]		minRegionArea	The minimum number of cells allowed to form isolated island areas.
///  								[Limit: >=0] [Units: vx].
///  @param[in]		mergeRegionArea	Any regions with a span count smaller than this value will, if possible, 
///  								be merged with larger regions. [Limit: >=0] [Units: vx] 
///  @returns True if the operation completed successfully.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
							const int borderSize, const int minRegionArea, const int mergeRegionArea);

/// Sets the neighbor connection data for the specified direction.
///  @param[in]		s		The span to update.
///  @param[in]		dir		The direction to set. [Limits: 0 <= value < 4]
///  @param[in]		i		The index of the neighbor span.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
	const unsigned int shift = (unsigned int)dir*6;
	unsigned int con = s.con;
	s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}

/// Gets neighbor connection data for the specified direction.
///  @param[in]		s		The span to check.
///  @param[in]		dir		The direction to check. [Limits: 0 <= value < 4]
///  @return The neighbor connection data for the specified direction,
///  	or #RC_NOT_CONNECTED if there is no connection.
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
	const unsigned int shift = (unsigned int)dir*6;
	return (s.con >> shift) & 0x3f;
}

/// Gets the standard width (x-axis) offset for the specified direction.
///  @param[in]		dir		The direction. [Limits: 0 <= value < 4]
///  @return The width offset to apply to the current cell position to move
///  	in the direction.
inline int rcGetDirOffsetX(int dir)
{
	const int offset[4] = { -1, 0, 1, 0, };
	return offset[dir&0x03];
}

/// Gets the standard height (z-axis) offset for the specified direction.
///  @param[in]		dir		The direction. [Limits: 0 <= value < 4]
///  @return The height offset to apply to the current cell position to move
///  	in the direction.
inline int rcGetDirOffsetY(int dir)
{
	const int offset[4] = { 0, 1, 0, -1 };
	return offset[dir&0x03];
}

/// @}
/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
/// @{

/// Builds a layer set from the specified compact heightfield.
///  @ingroup recast
///  @param[in,out]	ctx			The build context to use during the operation.
///  @param[in]		chf			A fully built compact heightfield.
///  @param[in]		borderSize	The size of the non-navigable border around the heightfield. [Limit: >=0] 
///  							[Units: vx]
///  @param[in]		walkableHeight	Minimum floor to 'ceiling' height that will still allow the floor area 
///  							to be considered walkable. [Limit: >= 3] [Units: vx]
///  @param[out]	lset		The resulting layer set. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf, 
							  const int borderSize, const int walkableHeight,
							  rcHeightfieldLayerSet& lset);

/// Builds a contour set from the region outlines in the provided compact heightfield.
///  @ingroup recast
///  @param[in,out]	ctx			The build context to use during the operation.
///  @param[in]		chf			A fully built compact heightfield.
///  @param[in]		maxError	The maximum distance a simplfied contour's border edges should deviate 
///  							the original raw contour. [Limit: >=0] [Units: wu]
///  @param[in]		maxEdgeLen	The maximum allowed length for contour edges along the border of the mesh. 
///  							[Limit: >=0] [Units: vx]
///  @param[out]	cset		The resulting contour set. (Must be pre-allocated.)
///  @param[in]		buildFlags	The build flags. (See: #rcBuildContoursFlags)
///  @returns True if the operation completed successfully.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
					 const float maxError, const int maxEdgeLen,
					 rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);

/// Builds a polygon mesh from the provided contours.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		cset	A fully built contour set.
///  @param[in]		nvp		The maximum number of vertices allowed for polygons generated during the 
///  						contour to polygon conversion process. [Limit: >= 3] 
///  @param[out]	mesh	The resulting polygon mesh. (Must be re-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);

/// Merges multiple polygon meshes into a single mesh.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		meshes	An array of polygon meshes to merge. [Size: @p nmeshes]
///  @param[in]		nmeshes	The number of polygon meshes in the meshes array.
///  @param[in]		mesh	The resulting polygon mesh. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);

/// Builds a detail mesh from the provided polygon mesh.
///  @ingroup recast
///  @param[in,out]	ctx				The build context to use during the operation.
///  @param[in]		mesh			A fully built polygon mesh.
///  @param[in]		chf				The compact heightfield used to build the polygon mesh.
///  @param[in]		sampleDist		Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
///  @param[in]		sampleMaxError	The maximum distance the detail mesh surface should deviate from 
///  								heightfield data. [Limit: >=0] [Units: wu]
///  @param[out]	dmesh			The resulting detail mesh.  (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
						   const float sampleDist, const float sampleMaxError,
						   rcPolyMeshDetail& dmesh);

/// Copies the poly mesh data from src to dst.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		src		The source mesh to copy from.
///  @param[out]	dst		The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
///  @returns True if the operation completed successfully.
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);

/// Merges multiple detail meshes into a single detail mesh.
///  @ingroup recast
///  @param[in,out]	ctx		The build context to use during the operation.
///  @param[in]		meshes	An array of detail meshes to merge. [Size: @p nmeshes]
///  @param[in]		nmeshes	The number of detail meshes in the meshes array.
///  @param[out]	mesh	The resulting detail mesh. (Must be pre-allocated.)
///  @returns True if the operation completed successfully.
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);

/// @}

#endif // RECAST_H

///////////////////////////////////////////////////////////////////////////

// Due to the large amount of detail documentation for this file, 
// the content normally located at the end of the header file has been separated
// out to a file in /Docs/Extern.